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ABSTRACT
In order to mount an effective defense, information about likely
adversaries, as well as their techniques, tactics and procedures is
needed. This so-called cyber threat intelligence helps an organization
to better understand its threat profile. Next to this understanding,
specialized feeds of indicators about these threats downloaded into
a firewall or intrusion detection system allow for a timely reaction
to emerging threats.

These feeds however only provide an actual benefit if they are
of high quality. In other words, if they provide relevant, complete
information in a timely manner. Incorrect and incomplete informa-
tion may even cause harm, for example if it leads an organization
to block legitimate clients or if the information is too unspecific
and results in an excessive amount of collateral damage.

In this paper, we evaluate the quality of 17 open source cyber
threat intelligence feeds over a period of 14 months, and 7 addi-
tional feeds over 7 months. Our analysis shows that the majority of
indicators are active for at least 20 days before they are listed. Addi-
tionally, we have found that many list have biases towards certain
countries. Finally, we also show that blocking listed IP addresses
can yield large amounts of collateral damage.

1 INTRODUCTION
In order to effectively protect a system, one needs information.
This includes information about possible attackers, their capabili-
ties, their commonly used tactics and techniques as well as feasible
countermeasures. This information can be gathered by a company
itself, or obtained from providers specialized in providing this in-
formation. At a first glance, the idea of gaining a head start and an
upper hand to combat the activities of malicious adversaries seems
like an oxymoron. After all, if an intelligence provider distributes
information about the activities, used tools or domains and IP ad-
dresses from which attacks are being carried out to a wide public,
adversaries would immediate recognize having been uncovered
and correspondingly change their activities, thereby negating the
benefits a defender would have from this information in the first
place. The use of cyber threat intelligence is thus a race against the
clock, where published information is prone to soon lose its value.
This means that the distribution of information about adversarial
activities as soon as possible is key. While it is in principle possible
for organizations to assemble and grow such a body of knowledge,
most shy away from the associated costs and complexity in building
such cyber threat intelligence (CTI) themselves, but rather turn to
commercial and open source threat intelligence providers for help.
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In the very recent past, this shift to intelligence-driven defense
has led to the emergence of a plethora of companies providing CTI
feeds, often at a heavy price tag. Threat intelligence feeds range
from complex sitreps, sector analysis and trend reports in essay
formats, to machine-readable lists of indicators of compromise such
as traffic signatures or malicious IP addresses that organizations
can download and install into their firewall, thereby catering to the
entire spectrum of organizational cyber security maturity levels. In
addition to such for-profit services, a variety of open source alterna-
tives have sprung up, which are provided by security companies as
a marketing instrument or driven by a community effort of aggre-
gating information across defenders. While commercial feeds may
add unique results for example from internal forensic investigation,
many commercial providers have been known to repackage, curate
and resell other (open source) lists [5].

By definition, cyber threat intelligence is however a highly per-
ishable good, since as soon as it is discovered and distributed to
clients, also adversaries will know that one of their tools or assets
has been discovered and would try to replace this “burnt” artifact as
soon as possible. Thus, in order to be effective, threat intelligence
has to be timely, but also highly accurate. With inaccurate listings,
automatic download and application of indicator information could
lead to undesired effects such as blocking traffic from benign clients.
This collateral damage may overall do more harm than good, which
leads to the question how effective these feeds actually are.

In this paper, we aim to answer the question How effective are
open source Cyber Threat Intelligence feeds, and how can we measure
their quality? To do this, we create suitable metrics to evaluate
the quality of 24 open source cyber threat intelligence feeds, and
estimate the utility and risk each of these services provides to an
organization. With our work, we make the following three contri-
butions:
• We introduce a taxonomy to evaluate the quality of cyber
threat intelligence feeds aiming to assess the utility the user
may gain from such a feed.
• We evaluate the indicators reported on 24 open source threat
intelligence feeds across four dimensions, and benchmark
using NetFlow data and zone transfers the timeliness, sensi-
tivity, originality and impact of these feeds.
• We empirically analyze the impact, a listing of an indicator
on an intelligence feed has, on its activity thereafter. This
allows us to evaluate the adoption of these feeds in practice
and estimate whether a feed is in practice able to “save”
clients and networks from future harm.

The remainder of this paper is structured as follows: Section 2
discusses existing work into cyber threat intelligence and its eval-
uation. In Section 3, we develop evaluation criteria for a quality
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assessment of cyber threat intelligence that will be used within
this paper. Section 4 describes open source intelligence feeds col-
lected for the analysis, while Section 5 describes their utility in
terms of relevance, timeliness, completeness and accuracy. Section
6 evaluates the adoption of these sources in practice and the benefit
they bring to networks. Section 7 summarizes our findings and
concludes our work.

2 RELATEDWORK
Cyber threat intelligence feeds are widely used in industry, and
are relied on as a useful tool to mitigate attacks. Despite major
commercial interest in these feeds, initial surveys indicate that the
quality of these feeds might not be as high as one would like. In
a study in 2015 [3], authors state that most intelligence was not
specific enough. Additionally, 66% of respondents state that the
information is not timely.

On the same note, Tounsi et al. [12] states that there are still
many limitations when it comes to threat intelligence. One of the
limitations is that there is too much information, with 250 million
indicators per day. Another finding in this paper, is that threat
intelligence available to enterprises is often out of date due to
the short lifespan, and therefore not always useful. Limitations
of blocklists are also apparent in [9], in which the authors show
the incompleteness of the evaluated blacklists. To further measure
the shortcomings, several works have been focused on empirical
evaluation of these feeds [7, 10, 11], as well as test suites with
specific goals in testing blocklists [8].

In 2014, Kührer et al. published a paper in which multiple black-
lists are empirically analyzed [7]. In this paper, the authors identify
for a number of domain lists the active, parked and sinkholed do-
mains. The analysis in the paper gives insight into domain blacklists,
measuring their accuracy, completeness and estimating the time-
liness of the blacklists. As the goal of the study was not to create
metrics to generalize the evaluation of cyber threat intelligence
feeds, no metrics have been created and evaluated in this topic.

A Defcon presentation by Pinto andMaxwell [2] aims to measure
the effectiveness of threat intelligence feeds in two dimensions. In
this presentation, the authors show evaluations for the scope and
accuracy of these feeds. Their research has been further comple-
mented by Pawliǹski and Kompanek [1], which state that there
are eight criteria in which the quality of a threat intelligence feed
can be measured. These metrics are however not evaluated on a
large number of CTI feeds, and some of these metrics are hard to
evaluate automatically.

In this paper, we propose four quality metrics for CTI feeds that
can be automatically analyzed, and analyze 24 different open source
CTI feeds using these metrics.

3 QUALITY CRITERIA FOR THREAT
INTELLIGENCE

In this section, we will describe four different criteria, which we will
use in the following to evaluate the quality of open source threat
intelligence feeds. As discussed in the related work, Pawliǹski and
Kompanek [1] have proposed at an industry forum a taxonomy to
benchmark threat intelligence along the dimensions of (a) relevance,
(b) accuracy, (c) completeness, (d) timeliness, and (e) ingestibility.

We find this classification however problematic, as several of the
criteria are entangled: for example, in the machine learning and
pattern recognition domains, relevance is usually measured by pre-
cision and recall. In other words, how many of the selected items
in a dataset are correctly identified, and how many of the relevant
items are found in the dataset, respectively. Recall however also
partially assesses similar aspects as completeness, so quantification
results would contain some degree of correlation. Along the same
lines, accuracy is also widely used concept in machine learning,
and in binary classification measures the ratio of true results to
all examined data, or T P+T N

T P+T N+F P+FN . While threat intelligence
is a classification task, classifying activity as either malicious or
non-malicious, threat intelligence feeds are not classification tasks,
but should mainly contain information from one label. Therefore, a
binary accuracy characterization does not work well due to imbal-
ance of the data present in the feeds. For these reasons, we propose
complementary metrics to measure the quality of these feeds.

A Taxonomy for CTI Quality
In order to evaluate the quality of cyber threat intelligence, we
therefore propose a set of four metrics: timeliness, sensitivity, orig-
inality and impact, which we will describe in further detail in the
following:

(1) Timeliness. The goal of subscribing to a threat intelligence
feed is to obtain early warning of some emergent malicious
activity, so that infections in the local area network can
be stopped in time before significant losses are incurred.
Hence, the earlier indicators such as IP addresses or domain
names are flagged, the higher the utility of the feed is to the
subscriber, and in turn we can also conclude the better the
quality of the provided information. One essential quality
criteria of a threat intelligence feed is thus the timeliness of
the information posted, in other words how soon a domain
or IP address is included in such lists after it has started mali-
cious activities. A high timeliness will minimize the amount
of damage that could be incurred as part of a compromise,
as it shortens the time window during which hosts may be
under adversarial control and the time an adversary may for
example exfiltrate data or abuse the infected client.

(2) Sensitivity. In order to be included into a feed, the threat
intelligence provider has to observe some malicious activity
in the first place. This is typically done using a variety of
sensors, recording network traffic patterns, DNS lookups, as
well as for example based on the forensic analysis of malware
samples. If a particular malware instance, C&C server, or
maliciously acting host shows only low, sporadic activity,
there is a high likelihood that it would not be seen by a
provider and thereby go by unmitigated until the problem
grows above a certain threshold.
With sensitivity, we therefore assess what volume is neces-
sary for the intelligence provider to take notice of a malicious
activity, in other words what is the average and typical mini-
mum threshold at which detection will take place. In addition
to quantifying the overall per-feed threshold, we can also
measure the sensitivity of a threat intelligence feed with
respect to a geographical focus: if a provider predominantly
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has sensors in a specific region, detection will be biased
against threats emerging or deployed in this particular area,
while comparatively insensitive towards threats originating
outside of the measurement coverage. As Internet threats
by definition operate worldwide, heavy geographical biases
therefore introduce a significant risk of getting hit unpre-
pared.

(3) Originality. In practice, an organization would likely sub-
scribe to several threat intelligence feeds, as CTI providers
often specialize towards a particular type of threats. We also
see this behavior in threat intelligence providers themselves,
who – as we have said earlier – are also often aggregating,
curating and repacking other sources to be marketed as their
own service. An essential metric of a cyber threat intelligence
feed is therefore originality, in other words the amount of
information that is unique to this particular source and that
could not be obtained otherwise.
While originality measure the contribution made by one
specific feed, it can also be used as a metric to quantify
an ecosystem of intelligence feeds as a whole. Consider a
number of k feeds which all report malware C&C servers.
If all indicators provided by these feeds are highly unique,
in other words there is no or only limited overlap between
them, this also means that even their union provides only
an insufficient peak at the population of C&C servers. We
can thus say that in case of high ecosystem-wide originality
each feed only draws for samples from a large problem space,
and in these cases the set of intelligence feeds is unsuited
to provide sufficient defense against this particular type of
threat.

(4) Impact. When an organization applies the information ob-
tained from the threat intelligence feeds, this should lead
to a mitigation of a particular threat, as connections to and
from a malicious host are suppressed and no command &
control activity or an initial infection should happen any-
more. Based this positive impact, an application of the threat
information can also have negative consequences, especially
if the information is not specific enough or contains false
positives.
The former is particularly of concern if feeds only provide
IP address information, such as the IP address a command
& control server is currently hosted at. While in times of
domain-generation algorithms (DGAs) indicators such as
domain names have an extremely short lifetime, in many
circumstances an actor will not host malicious infrastruc-
ture on a dedicated machine, but rather employ the services
of commercial vendors as this offer much higher flexibility
and incurs no loss (expect for the forfeiture of prepaid ser-
vice) such as the seizure of own hardware. This however
also means that at particular IP address that is flagged as
malicious other services may be present which are then also
blocked as collateral damage.
Our metric impact measures the consequences to an organi-
zation if the information from a threat intelligence feed is
applied, for example by blocking IP addresses in the firewall.
This can have both positive and negative consequences, and

we care whether all of the malicious activity will be sup-
pressed given the feed’s data, and whether it only covers
malicious activity or the application will also cause harm to
benign services. For example, if a malware communicates
with its C&C server using 10 IP addresses, the blockage is
only really successful and useful if all 10 addresses are in-
cluded in the feed as otherwise the activity simply continues
using an alternative channel, and only these 10 addresses
are blocked.

4 DATASETS
Goal of this paper is to evaluate the quality of cyber threat intel-
ligence feeds, which we will do based on the criteria described in
the previous section. For this purpose, we have monitored a total
of 24 open source feeds which blacklist domain names as well as
IP addresses based on detected malicious activities, annotated into
major categories such as botnet C&C server activity, usage as a
phishing domains etc. These feeds were continuously monitored
over a period of 7 months from August 1, 2018 until February 28,
2019, and when available also all historical records back until Janu-
ary 1, 2018. This yielded a total of 1,383,040 indicators that we are
going to use for this evaluation.

For our analysis, we monitored 17 threat intelligence feeds over
a period of 14 months, and 7 feeds over a period of 7 months. In
table 1, we will briefly enumerate each of the feeds included in this
analysis.

In order to evaluate the available cyber threat intelligence feeds
with respect to timeliness, accuracy, completeness and relevance,
we make use of two auxiliary datasets:
• Active domain crawls Based on zone transfers on regis-
tered domains from ICANN and national domain registries,
we have crawled approximately 277 million unique domains
across 1151 generic and country code top level domains on a
daily basis. This data shows which IP address was connected
to which domain at any given day.
• NetFlows of a tier 1 operator To detect whether an IP ad-
dress is actually receiving traffic or not, and to investigate the
response of networks to a blacklisting, we leverage NetFlow
data collected at the backbone of a tier 1 network opera-
tor. These NetFlows were recorded at each of the operator’s
core routers at a sampling rate of 8192:1 and thus allowed
the reconstruction of activity towards specific IP addresses.
We provided a list of IP addresses flagged as malicious by
the threat intelligence feeds, and received an anonymized
list of IP addresses that connected to the suspicious targets.
In order to preserve the privacy of the customers, the IP
addresses of the clients were anonymized by the ISP using
the technique described in [6] and obfuscated at the level of
autonomous systems. This allowed to quantify the activity
of malicious endpoints without learning anything of about
identity of the actual users.

4.1 Anonymization
In order to preserve the privacy of users in the NetFlow dataset,
the IP addresses of senders and receivers are randomized to mask
their identity. While for NetFlow datasets only a deterministic,
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random one-to-one mapping of original to anonymized IP addresses
is necessary to match outgoing requests with returning answers, in
such blind randomization the relationship information of networks
is lost. Thus, it is not possible to preserve information locality
information such as a C&C activity realized by several hosts in the
same /24 subnet, as these hosts would be scattered across the entire
IPv4 space.

In this paper, we use themethod introduced by Xu et al. [13], who
introduce a random one-to-one mapping while preserving network
information. If we represent network addresses in a binary tree
which each bit of the IP address when read left to right will result
in a transition to the left or right subtree under a node, an IP block
under a shared prefix will be expressed as an entire subtree under
one specific node. Consider the example in 1(a), all IP addresses
in the prefix P1 start with the digits “00’ in their address, while IP
addresses in the adjacent address block begin with “01”. Under each
leaf node – which are marked in grey – are then all IP addresses
associated with this particular IP allocation.

In Xu et al.’s “Cryptography-based Prefix-preserving Anony-
mization” (Crypto-PAn) [13] scheme, the bit value of every non-
leaf node is flipped randomly. This means that if two IP addresses
shared a k-bit prefix, also the anonymized IP addresses will share an
identical, but now randomized k-bit prefix. Within each netblock,
IP addresses can now be scrambled without loosing information
about the logical coherence of the addresses to one provider, and
prefix-preserving anonymization comes in handy for the evaluation
of threat intelligence feeds as related activity is often located in
adjacent IP addresses or subnet blocks as we will show later. The
randomness in Crypto-PAn is drawn from the AES block cipher, and
a short encryption key is thus sufficient to provide an effective IP
randomization function. The authors prove in [13] that this scheme
delivers semantic security.

The anonymization of NetFlows was done on site of the Tier1
operator using a secret key chosen by the operator, so that only
obfuscated data was analyzed within the context of this project,
thus preserving the identity of Internet users. In order to match
the information on malicious activity from the threat intelligence
feeds to the traffic patterns in the NetFlow dataset, the operator
additionally provided us with a lookup table of the malicious IP
addresses from the feeds to the anonymized counterpart in the
dataset to enable the analysis presented in the remainder of this
paper.

0 1

0 1 0 1

0 1

0 1 0 1

0 1

(a)

0 1

0 1 0 1

0 1

0 1 0 1

0 1

(b)

Figure 1: Prefix-preserving randomization after Xu et al.
[13]

5 QUALITY EVALUATION OF FEEDS
Based on the criteria introduced in section 3, in this section we
discuss the results of the quality evaluation of the 24 tested cyber
threat intelligence feeds. The following subsections will first review
their performance in terms of timeliness, sensitivity, originality
and impact, before in section 6 we will in further detail analyze the
question of their overall utility and adoption in practice.

5.1 Timeliness
In this section, we are assessing the timeliness of cyber threat intel-
ligence feeds based on the amount of traffic a particular destination
has received, prior and after it was included in the analyzed feeds.

To visualize the process, figure 2 depicts connections within the
Tier1 network to seven example destination IP addresses between
July 2018 and January 2019 that were in the second half of 2018
flagged as malicious. For each day, we aggregated flows from dis-
tinct clients towards each destination, the size of each circle shows
in logarithmic scale the total number of recorded flows. Note that
the IP addresses are anonymized as discussed in section 4: while
the anonymization protocol matched the feed indicators to the IP
addresses, the shown IP addresses are randomized at the level of
prefixes. Thus, no conclusion can be taken about the concrete IP
addresses at hand or their location in the world.

2018-07 2018-08 2018-09 2018-10 2018-11 2018-12 2019-01

228.219.115.47

73.150.151.230

66.61.247.165

179.98.73.222

187.78.79.118

70.12.227.21

Figure 2: Scatter plot of netflow activity. The size of the line
shows the amount of traffic observed. Crosses denote when
the IP address was blacklisted.

As we see in the graph, we find that activity on IP addresses
and their appearance in intelligence feeds frequently diverges sig-
nificantly in practice. The first three IP addresses in the figure are
examples of a very timely detection – the IP addresses are reported
as soon as the first activity arises, and in the first case even months
before significant botnet traffic appears towards this C&C server.
Not every intelligence report is however as successful. In the fourth
and fifth case, the IP addresses are active for several weeks prior
to reporting, and in case of 73.150.151.230 it is only marked as ma-
licious after a significant traffic volume emerges. An even worse
outcome is shown just below in case of 228.219.115.47: while after
the including of the IP address in the threat feeds activity abruptly
stops, the IP address had been active for almost 3 months prior, and
been engaged in thousands of connections with clients.

While we could simply mark the onset of a significant number
of flows to a flagged IP as the beginning of the illicit activity, this
procedure would result in overestimations for example when IP
addressed used legitimately before are reallocated by a provider to
a customer that starts to abuse them. We can however identify the
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Table 1: List of evaluated open source feeds

TI Feed Automated Period Amount of IPs
Badips Yes 14 months 95
Bambenek Yes 14 months 1,796
Blocklist.de Hybrid 14 months 944,622
BotScout Bot List No 14 months 1,564
Botvrij No 14 months 95
BruteForceBlocker No 14 months 4,663
CI Army IP Hybrid 14 months 181,439
CINSscore Hybrid 14 months 250,153
Charles the Haleys No 7 months 38,999
Cruzit No 7 months 49,911
Danger.rulez No 7 months 3,099
Dshield No 14 months 106
Emerging Threats No 14 months 10,464
Greensnow No 14 months 116,748
MalwareConfig Yes 14 months 19
Malwaredomainlist Yes 14 months 1,011
Myip No 7 months 55,936
Nothink Yes 7 months 42
Phishtank Yes 14 months 2,708
Ransomwaretracker Hybrid 14 months 383
Rutgers Yes 14 months 112,898
Talos Hybrid 7 months 2683
Tech. Blogs and Reports Yes 14 months 6,151
Zeustracker Yes 7 months 112

xx

IP Address is assigned 
to new customer

Malicious activity starts

Legitimate 
activity on IP 

address

time time

Malicious 
activity starts

Continuous overlap between source IP 
addresses across all segments

Strong overlap of source IPs within 
subsequent segments but limited across a gap

Figure 3: By comparing the set of IP addresses that are con-
necting to an IP address flagged asmalicious, we can approx-
imate the start of the malicious activity.

starting point and transition phases such as IP churn or hacked hosts
by comparing the sets of client IP addresses that connect to a flagged
destination. Intuitively, we exploit here that a server running as a
reporting point for ransomware or as a command & control instance
for bots or would be contacted in regular intervals by infected
clients [4], while regular website would attract a more diverse group
of visitors that would make a connection at unspecific times than
the same set of clients coming back in the similar regular intervals.
In the left part of figure 3, there exists a large overlap of the client
IP addresses making contact for the entire period beginning the
start of traffic and the IP being reported malicious. In the right part,
we can identify a break in this pattern, with a consecutive sequence
of windows showing significant overlap until being marked, while
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Figure 4: PDF of the times it takes a list to blacklist a host
after it became active. From the plot can be seen that hosts
are routinely active for multiple weeks before a destination
is marked as malicious by threat intelligence feeds.

earlier activity shows only insignificant overlap with this period.
When doing this analysis for the IP addresses flagged as malicious
by the feeds, we can thereby obtain a conservative lower rather
than a loose upper bound for the start of the malicious activity.
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Figure 5: CDFof update frequency of the evaluated lists. Two
thirds of the threat intelligence feeds are updated a least
once a day, one thirds even includes new indicators in hourly
intervals.

We conducted the analysis of timeliness for all 1,383,040 indica-
tors across the 24 threat intelligence feeds and counted the number
of consecutive days IP addresses have received activity from clients
before they were included in a particular list. Based on this analysis,
we find that the first examples of successful indication in figure 2
are the exception rather than the norm, surprisingly we find that it
takes on average 21 days before indicators are included in a list.

Figure 4 splits this analysis out, where each curve shows in a
probability density function the number of active days until listed
by an individual provider. As can be seen in the graph, a handful
of feeds are clearly leading the pack, with the response time of CI
Army being about 50% better than the overall average. In the bulk
of the feeds, we find surprisingly high homogeneity and overall
slow inclusion of malicious sources into the feeds, with turn around
times of on average approximately one month. Even lists commonly
praised by practitioners as “high quality” or “industry standards”,
such as the widely used Emerging Threats score surprisingly average
in this respect. At the lower end of the scale, we have already
observed activity for on average 65 to 80 days, before the slowest
to respond feeds – Talos and PhishTank – include these IP address
in their reports as malicious.

This lag between the emergence of malicious activity and the
inclusion in the threat intelligence feeds might be due to a slow
update frequency. To investigate this hypothesis, we analyzed the
inter-arrival time when information was included across the 24
feeds, figure 5 shows a cumulative density function of the time in
between list updates. As we can see from the graph, information is
pushed at a very high frequency to the portfolio of lists, in one third
of the cases updates occur at least hourly, while approximately two
thirds of items are updated at a granularity of at least once per day.
Thus, it is not the processing of the lists where reporting latency
occurs, but during the selection and preparation of indicators.

5.2 Sensitivity
As we have already seen above, there seems to be a significant
deviation between feeds in how soon indicators are included after
the first sign of network activity. Figure 6 lists a cumulative density
function of the number of connections we observe before an address
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Figure 6: Cumulative density function of the minimum ac-
tivity before an IP addresses is included in a threat intelli-
gence feed.

is included in a particular intelligence feed as malicious. While the
majority of lists is surprisingly homogeneous in their sensivity
– we see that the bulk of them triggers with 50% likelihood if at
least 6*8192 - 10*8192 flows are recorded –, also here many drastic
outliers emerge. Dshield’s sensitivity is across the board 1.5 - 2
orders of magnitude lower than the rest, here indicators are almost
exclusively listed only when they show major activity. When we
refer back to figure 4, we notice this feed to also perform sub-
average with respect to timeliness. Other feeds that are also not
very sensitive, like Danger.rulez, have better timeliness.

Sensitivity is however not only dependent on the types of sen-
sors a threat intelligence provider utilizes, but also where these
sensors are located. Threats emerging a specific geographic areas
might hence be under- or overestimated, leading to an overall bias
in sensitivty. As there is no ground truth on where in the world
threats are actually located, we can only do a relative evaluation
on the position of the listed indicators – based on their IP prefix
information – for each individual intelligence feed. Figure 7 shows
this relative geographical distribution of indicator per feed, which
clearly reveal major differences in reporting between the providers
and likely the location of their sensor infrastructure. For instance,
more than 40% of all reports made by Bambenek are located in the
United States, whereas more than 40% of reports on MalwareConfig
originate from Turkey and around 40% of the data provided by
GreenSnow relates to the China.

These biases become evenmore apparent when we normalize the
IP addresses reported as malicious by the number of IP addresses
allocated within that region. Assuming that malicious activity is not
strongly concentrated within individual countries, we thus obtain
a normalized geographical reporting as shown in figure 8, this
shows that for example CI Army and CINSscore are heavily leaning
towards reports from Turkmenistan, which is nearly entirely absent
in the reports from all the other threat intelligence providers.
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Figure 7: Geographical distribution of indicators per list.
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Figure 8: Relative geographical distribution of indicators,
normalized by total number of IP addresses in a country.

On a positive note, the distribution of reports by Emerging
Threats, Badips, Blocklist.de, BruteForceBlocker, CruzIT and Myip
show no clear geographical preference, and which seems to lend to
the conclusion that their measurement infrastructure is sufficiently
diverse.

5.3 Originality
To investigate the uniqueness of the provided information, we
traced for each of the 1.38 million indicators when it was first
emerging on a particular list and whether individual indicators
were afterwards also included on other lists. Besides the result of
independent original research, such reuse might also indicate that a
particular feed would important the data provided by others. Figure
9 shows the later reuse of indicator information across lists, where
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Figure 9: Indicator reuse across feeds occurs only sporadi-
cally, with the expection of two threat intelligence feeds.

an arrow indicates that information first originated at the source
of the arrow and was later included in the list its points to. The
thickness of the arrow and the corresponding label corresponds
with the percentage of information on the receiving list, that earlier
appeared somewhere else. For readability, only flows where more
than 5% potentially originated from a different list are shown.

While commercial threat intelligence providers often only con-
solidate and curate information as discussed above, we see also
some repackaging – although at highly varying degrees – in case
of open source feeds. The indicators first appearing on the feed
Blocklist.de routinely appear on other lists, and in two cases a fifth
of all indicators are shared with Blocklist.de where they appear
earlier. Similarly, a quarter of the indicators on Danger.rulez pre-
viously appeared on Emerging Threats, however at a global scale
such repacking is comparatively seldom and only 11 out of the
24 lists showed such relationships at all. Across the entire dataset,
indicators reappear comparatively seldom, in total only 85,906 out
of the total 1.38 million entries were also listed on another feed
(6.2%).

5.4 Impact
In order to evaluate the level of potential collateral damage, we
resolved the IPv4 and IPv6 A records of 277 million domain name
across across 1151 top-level domain zones that we received from
the TLD operators on a daily basis. For every threat intelligence
feed, we then analyze how many domain names were pointing to a
particular IP address on the day it was marked as malicious, as all
of these domain names would no longer be resolvable if a customer
would apply the ruleset provided by the threat intelligence provider
in for example a firewall. Figure 10 shows the cumulative density
function of the number of domain names resolving to the indicated
IP addresses by threat feed.

As we can see in the graph, there are drastic differences in the
amount of collateral damage between feeds. A homogeneous set
of feeds – among them BruteForceBlocker, Talos, CruzIT, CI Army
IP, and Rutgers – are comparatively targeted, more than half of
their entries are not affected any other domain names, while the
80% most targeted indicators affect less than 6 other domain names
if applying an IP-based block. This is somewhat logical for a list
that focuses on bruteforcing, which is typically not happening from
servers that host websites or are operated by a shared web hoster,
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Figure 10: Cumulative probability function of the domain
names associated with the IP addresses indicated as mali-
cious per threat intelligence feed.

this is however not the case for the information included on CruzIT,
CI Army IP or Rutgers, which include IP addresses used to attack
or probe certain networks. For Talos we know that it is curated
by Cisco, which makes it likely that this is the reason for the low
amount of collateral damage.

This is however not true for all of the feeds. In case of Bambenek,
only 16% of the best performing indicators will block less than 50
live domains hosted at these websites, where the 50% worst per-
forming indicators even affect 100 or more domains as collateral
damage. While some of the blocked domains may certainly also con-
tain malicious activity, some of the instances included large shared
hosters, in one case with more than 900,000 domains pointing to the
blacklisted IP address. While such issues could be explained due to
automatic collection of indicators, we also found a surprisingly poor
track record in case of “Technical Blogs and Reports”, a curated list
of human analyst reports. This indicates that human-made feeds
are not necessarily better, or at least suggests that feeds do not
filter records that could potentially be harmful to normal system
operation.

6 DISCUSSION
After an evaluation of each of the 24 feeds across the four dimen-
sions timeliness, sensitivity, originality and impact, we will take a
step back in this section and evaluate the ecosytem of intelligence
feeds as a whole. Specifically we will investigate how widely these
feeds are adopted by network owners and operators in practice,
and review the issue of the surprisingly high level of originality for
the ecosystem as a whole.

6.1 Adoption of Intelligence Feeds
As cyber threat intelligence feeds are meant to alert and empower
network owners to block malicious activity, their application should
lead to a reduction in network traffic towards the hosts flagged as
malicious. This observation provides us with an angle to investigate
the adoption of threat intelligence feeds worldwide. After all, as
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Figure 11: Continuation of activity to flagged destinations
after listing in a feed.

soon as an indicator has appeared on a list we would expect a
significant drop of activity – if not the absence of requests – from
subscribers.

When networks apply the information provided in cyber threat
intelligence feeds at scale, we should ideally see the activity from
infected clients to malicious destinations drop and eventually die
out. As we have however seen above, intelligence feeds are not
universally adopted but have a specific regional footprint and there
exists only a marginal overlap between lists; thus, even if a network
would subscribe to and apply the information from every single
intelligence feed we cannot expect all activity to immediately seize.

Figure 11 shows a probability density function of how long activ-
ity towards a particular destination continued after an indicator was
listed on a particular intelligence feed. As we see from the graph,
the inclusion of indicators on for example BruteForceBlocker seems
to be an effective deterrent, as on average activity stops within 2
weeks time. Other lists such as Botvrij are less successful: more
than 50% of all hosts reported as malicious by this feed continue
their activity for at least 79 days, with an extremely long trail, thus
a listing on this block list seems to have almost no impact on the
criminal activity itself. Like in case of timeliness until detection
(see section 5.1), the threat intelligence feeds are also surprisingly
homogeneous with respect to the continuation of activities, and
we can clearly see in figure 11 two main clusters, with activity
termination peaking around 20 days after listing and 60 days after
reporting.

6.2 Do we have enough coverage?
There remain however questions about the quality of the ecosys-
tem of cyber threat intelligence providers as a whole. Although it
is desirable for a customer that CTI feeds have a large degree of
originality as otherwise a customer would subscribe – and pay for
– redundant information, we have seen that the amount of over-
lap between the entire spectrum of analyzed feeds was actually
remarkably low. This on the one hand is commendable as it maxi-
mizes value of CTI users, on the other hand it also raises questions
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whether the cyber threat intelligence feeds really provide sufficient
information to stop malicious activity in their tracks.

As discussed in section 4, the 24 evaluated open source feeds
spanned the entire ecosystem of malicious activity from bruteforc-
ing activity, ransomware and other malware, to botnets. As each
type of malicious activity was covered by multiple feeds, we actu-
ally would expect some overlap in reported indicators. The fact that
there is almost no overlap between lists of similar scope could be
the result of two reasons: first, all individual lists for example target-
ing botnets or ransomware rely on orthogonal detection methods
and are therefore providing complementary information. Second,
the lists monitor malicious activity in comparable ways, but the
overall volume of malicious activity is so large that effectively each
lists only obtains a tiny sample, and such low rate sampling from
a large universe would statistically lead to a very low chance for
duplicates.

Conceptually, we can see that we are probably dealing with the
latter than the former reason, after all methods to for example
detect ransomware C&C servers are limited, and most likely all
providers would employ off-the-shelf tools such as an analysis of
network activity across malware samples or a forensic analysis
thereof. This unfortunately drives us to the conclusion that cyber
threat intelligence feeds cover much less of malicious activity than
we would expect and require, to apply intelligence feeds and confi-
dently expect that with a very high degree of certainty malicious
activity will be stopped through these indicators.

7 CONCLUSIONS
Effective protection requires insights into the activities of adver-
saries, commonly referred to as cyber threat intelligence. In order
to protect against evolving threats, networks can subscribe to CTI
feeds which list indicators, such as domain names, IP addresses, or
hashes, related to malicious activity.

In this paper, we have analyzed 1.38 million indicators provided
by 24 open source cyber threat intelligence feeds over a period of 14
months, and analyzed whether the information provided by these
lists is timely, original, and estimated how sensitive the detection
of the intelligence providers are as well as the positive and negative
impacts a utilization of these feeds would have in practice. We find
large variations between the performance of these lists, some are
providing indicators within a few days while others only report
activity months after it has commenced. This variation is surprising
as we find all feeds to be relatively homogeneous in sensitivity, in
other words the threshold beyond which they pick up undesired
activity.

Nearly all of the analyzed lists are able to provide a significant
intelligence contribution. Although lists contain a small degree of
overlap, these lists are not merely subsets or repackaged versions
of each other. This on the one hand is valuable to defenders as each
feed does provide benefit with limited redundancy, at the same time
the little overlap across all CTI feeds raises the question how much
the ecosystem of cyber threat intelligence feeds as a whole really
covers, and whether the current feeds will provide defenders with
a suitable defense posture if applied.
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