Examining Mirai’s Battle over the Internet of Things

Harm Griffioen
Hasso Plattner Institute for Digital Engineering
University of Potsdam, Germany
harm.griffioen@hpi.de

ABSTRACT

Using hundreds of thousands of compromised IoT devices, the Mirai
botnet emerged in late 2016 as a game changing threat actor, capable
of temporarily taking down major Internet service providers and
Internet infrastructure. Since then, dozens of variants of IoT-based
botnets have sprung up, and in today’s Internet distributed denial-
of-service attacks from IoT devices have become a major attack
vector. This proliferation was significantly driven by the public
distribution of the Mirai source code, which other actors used to
create their own, customized version of the original Mirai botnet.
In this paper we provide a comprehensive view into the on-
going battle over the Internet of Things fought by Mirai and its
many siblings. Using 7,500 IoT honeypots, we show that we can use
300,000,000 compromisation attempts from infected IoT devices as
well as a design flaw in Mirai’s random number generator to obtain
insights into Mirai infections worldwide. We find that networks
and the particular malware strains that plague them are tightly con-
nected, and malware authors over time take over strategies from
their competitors. The most surprising finding is that epidemiologi-
cally, IoT botnets are not self-sustaining: were it not for continuous
pushes from bootstrapping, Mirai and its variants would die out.

CCS CONCEPTS

« Security and privacy — Network security; Malware and its mit-
igation.

KEYWORDS
Mirai, botnet, IoT, cyber threat intelligence

ACM Reference Format:

Harm Griffioen and Christian Doerr. 2020. Examining Mirai’s Battle over
the Internet of Things. In 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS °20), November 9-13, 2020, Virtual Event, USA.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3372297.3417277

1 INTRODUCTION

The emergence of the Mirai botnet in late 2016 fundamentally
changed the Internet threat landscape. Although the risk of insuffi-
ciently protected Internet-of-Things (IoT) devices was long known,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’20, November 9-13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7089-9/20/11...$15.00
https://doi.org/10.1145/3372297.3417277

Christian Doerr
Hasso Plattner Institute for Digital Engineering
University of Potsdam, Germany
christian.doerr@hpi.de

the problem made the front pages when its initial distributed denial-
of-service (DDoS) attacks exceeded volumes of 600 Gbps, crippling
major Internet infrastructure and service providers such as OVH
[2] or Dyn [1]. The first attack by an IoT botnet doubled previous
attack volumes from the get go, and in the coming weeks would
continue to increase to break the 1 Tbps threshold [8].

This did not only capture the attention of the general public
and defenders, but also the imagination of perpetrators. Soon after,
the source code of Mirai was published online [5], leading copy-
cats to release clones of Mirai-based IoT malware. Named “MIORI”,
“JOSHO?”, or “MASUTA”, these variants are directly derived from the
Mirai source code, copying the core framework and essential rou-
tines for scanning, infection and communication, but also feature
actor-specific modifications to passwords, the way the malware
identifies itself, and the C&C servers bots report back to.

Trivial access of the source and the abundance of vulnerable de-
vices has led to a plethora of Mirai variants, which are fighting over
control over the millions of IoT devices deployed worldwide. In this
paper, we are examining this battle between Mirai and its siblings
that have emerged since. To do this, we leverage the fact that the
Mirai botnet behaves like a worm, using an infected IoT device to
scan the Internet for other devices it could potentially compromise.
With an installation of 7,500 IoT honeypots, we are collecting these
infection attempts, and can turn 300,000,000 received compromisa-
tion attempts into a real-time view which devices around the world
are infected at a given moment with a particular strain.

One of the core features across Mirai and all its variants is how
it searches for victims. To avoid sequential port scanning that is
trivially detected, the malware selects targets based on randomly
generated destination IP addresses, and for which the authors de-
signed their own random number generator (RNG). As we will show,
this design has severe flaws, allowing us to break the seed based on
information from a single incoming packet. This insight can then
be used to learn about the lifetime of the infection on the device
itself. With this work, we are making the following contributions:

o We are the first to provide a comprehensive view into the
infection and reinfection behavior of IoT devices. We demon-
strate that it is possible to exploit structural weaknesses in
Mirai’s RNG to extract the precise moment of compromisa-
tion, which we use to understand the lifetime of infections.

e We show that IoT devices are under intense attack by a
plethora of actors. We follow the activities of 39 variants
and analyze how they infect and retain control over some
200,000 unsecured devices. We find that compromised hosts
frequently change “ownership” through reboots and reinfec-
tions, but also based on hostile takeovers by other actors.

e We show that IoT malware crashes comparatively quickly
on routers, and there are clear differences between particular
malware strains and the network devices are placed in.

https://doi.org/10.1145/3372297.3417277
https://doi.org/10.1145/3372297.3417277

D Adversary

C&C

Server [—
1
1

custom
port
Combromi v
ompromised

loT devices «» () () ﬁ* (@D)

Figure 1: Adversaries bootstrap using loaders, targeting a
predefined list of devices. Compromised hosts report to a
C&C and randomly target IP addresses to proliferate.

e We provide the first epidemiological quantification of Mirai,
and show that epidemiologically speaking, Mirai is not a
self-sustaining worm and would die out if it would not be
for the bootstrapping infrastructure that constantly spreads
reinfections to vulnerable devices.

e We find evidence of specialization of malware authors to-
wards specific victim groups. Strains use information about
devices in particular networks to gain a competitive advan-
tage, yet malware owners observe their competition and
adapt their password lists with information from their rivals.

e We demonstrate that adversaries are making deliberate ef-
forts to evade network ranges and thus avoid detection by
common measurement initiatives.

2 THE MIRAI BOTNET

While attacks on IoT devices have become common place, the ad-
vent of Mirai as the first major IoT malware was a milestone in
Internet security. Japanese for “future”, the IoT malware became
front-page news when its attacks severely impacted major Internet
infrastructure and service providers in DDoS attacks. To under-
stand how Mirai operates, we begin with an overview of the system
infrastructure and the way it targets victims.

2.1 System Infrastructure

The ecosystem of the Mirai botnet consists of three main compo-
nents as shown in figure 1: a loader to bootstrap the botnet, the
compromised routers themselves, and the command-and-control
(C&C) server to which bots report back and obtain instructions
from. Connections to the C&C are made using a plain TCP socket,
on an address and port hardcoded in the source. The control proto-
col is very simple, with instructions in binary status codes. Core of
the botnet are the compromised IoT devices, which are responsible
for spreading the infection further. To this end, they independently
scan the Internet for devices responding on specific ports. When
configured to search for telnet, they target ports 23 and 2323.

As adversaries would avoid to do the first initial scan and compro-
misation activities from their own IP address, the Mirai toolchain
includes a loader mechanism, which is provided with a list of de-
vices, for example powerful hosts with a high-bandwidth network
connection. These devices are then used to start the scanning and
infection activities, thereby bootstrapping the Mirai installation.

2.2 Mirai Behavior

Certain implementation choices of Mirai create unique behavioral
characteristics that can be efficiently fingerprinted. At a high level,
the Mirai IoT malware pursues three different objectives after the
infection of a device: first, it closes the entry point (typically telnet
on TCP port 23, which is also the focus of this paper) in order to gain
exclusivity over the compromised device. Second, the malware will
start a continuous scan for other devices and if it identifies an open
telnet port it begins to brute force based on a built-in credential
list. And third, it establishes a connection with the C&C server
hardcoded in the source and executes commands it receives. Figure
2 shows an excerpt of the Mirai source, which we will discuss in the
following, with these three tasks spawned in main() (see marker
@ in figure 2).

When targeting telnet, Mirai will attempt to bind to port 23. If
this is not possible, it tries to shut down the other telnet process
through which other logins could take place. In killer_init(),
it identifies and kills the process that has bound to this port @),
thereby locking the router down for the duration of the infection.
Mirai and its descendants are however non-persistent, so after a
reboot the device is restored to its pre-infected, vulnerable state. It
will spin up its original telnet process, and is ready for reinfection.

As one of its first actions, the Mirai malware forks off a separate
thread that performs an Internet-wide scan for other IoT devices. As
shown in scanner_init(), it begins by re-initializing the random
number generator (RNG) @ and choosing a random source port
in the range of [1024, 65535] @. It then prepares the IP and TCP
header it will use for subsequent scan packets. In an infinite loop,
it chooses random IP addresses as target (get_random_ip()) ®,
sets a random IP ID for the packet and chooses port 23 or 2323 as
port ®. Every IP is probed 10 times before continuing. In case of
a response, Mirai will start to brute force the login using a local
dictionary.

Target Selection and Randomness Generation. A number of packet-
specific information in the TCP SYN scans sent by Mirai are pop-
ulated based on output from the RNG, most importantly the des-
tination IP address, source port, and IP ID. This RNG is seeded at
startup and again at the fork of the thread with the current time
in epochs, the process IDs of the main() and the scanning thread,
and the number of clock ticks since the current process has been
started (which resets in the scanning thread due to the fork). These
functions return 32, 15, 15, and 32 bit values respectively, and are
used to initialize register variables x, y, z and w used in each itera-
tion. Although this would naively imply 94 bits of entropy in the
RNG seed, in practice most bits are entirely predictable.

The RNG itself follows a linear shift feedback register design
(LFSR), with four XOR operations and three bit shift operations.
The inner workings are depicted in figure 3, which shows the state
initialization and the generation routine. After the initialization of
(x,y,z, w) with environment variables, in each iteration, the left
and the right most internal state variables are repeatedly combined
with bit-shifts and XOR operations to compute the value of the
internal state variable w, which is at the same time the generated
random number. Note that the generated randomness is directly
taken from the internal state without any output transformation,
and thus leaks the state information to the outside. The content of

// main.c @

int main(int argc, char **args) {
rand_init();

scanner_init();

killer_init(); @
while (TRUE) {

establish_connection(); // CNC connection
}
¥
// scanner.c
void scanner_init(void) {
int i;
uintl6_t source_port;

// Let parent continue on main thread
scanner_pid = fork();

LOCAL_ADDR = util_local_addr();

rand_init();
fake_time = time(NULL);
do {
source_port = rand_next() & Oxffff; @
} while (ntohs(source_port) < 1024);

struct iph = (struct iphdr *)scanner_rawpkt;
struct tcphdr *tcph = (struct tcphdr *)(iph + 1);

iph->id = rand_next();

tcph->dest = htons(23);
tcph->source = source_port;
tcph->doff = 5;

tcph->syn = TRUE;

while (TRUE) {

for (i = @; i < SCANNER_RAW_PPS; i++) {
struct sockaddr_in paddr = {0};
struct iphdr *iph = (struct iphdr *)scanner_rawpkt;
struct tcphdr *tcph = (struct tcphdr *)(iph + 1);
iph->id = rand_next();
iph->saddr = LOCAL_ADDR;
iph->daddr = get_random_ip(); @
iph->check = 0;
iph->check = checksum_generic((uint16_t *)iph,
sizeof (struct iphdr));

if (1 % 10 == 0)
tcph->dest = htons(2323);

Yelse{ @
tcph->dest = htons(23);

}

tcph->seq = iph->daddr;

sendto(rsck, scanner_rawpkt, sizeof (scanner_rawpkt),
MSG_NOSIGNAL, (struct sockaddr *)&paddr, sizeof (paddr));
}

static ipv4_t get_random_ip(void) {
uint32_t tmp;
uint8_t o1, 02, 03, o4;

do {
tmp = rand_next();
ol = tmp & Oxff;
02 = (tmp >> 8) & oxff;
03 = (tmp >> 16) & Oxff;
04 = (tmp >> 24) & Oxff;
while (ol == 127 ||// 127.0.0.0/8 - Loopback

(o1 == 0) || // ©.0.0.0/8 - Invalid address space
(01 == 15 || o1 == 16) || // 15.0.0.8/7 - Hewlett-Packard Company
..); // Truncated, includes more blacklists
return INET_ADDR(01,02,03,04);

¥
// rand.c
static uint32_t x, y, z, w;
void rand_init(void) {
x = time(NULL);
y = getpid() ~ getppid();
z = clock();
w=z"y;

}

uint32_t rand_next(void) { //period 2796-1
uint32_t t = x;
t A=t << 115
t A=t > 8;
X=y;y=2;2=w
w A= w >> 19;
w =t
return w;

}
Figure 2: Selection of the Mirai source code, responsible for
the creation of scanning packets [4]

Zo Yo 20 wy

‘ time(NULL) ‘ ‘ getpid() & gctppid()‘ ‘ clock() ‘ ;:

N

& sey 3

\ ; T I Y, I 2 I T | g
7 ; 7

>>8 // // // g

, , ,]

S v~ s v 5

’, / s / » /] :

R S
Tig1 H Yi H it1 Wi i1 randet)

Figure 3: RNG initialization and generation.

the remaining three state variables is shifted by one field to the left,
thus the next random number directly depends on the last random
number generated as well as the one from three iterations ago.

While rand_next () generates a 32-bit value, its output is trun-
cated when used for the source port and IP ID to the lower 16 bits.
Mirai also rejects values lower than 1024 when setting the source
port to avoid privileged ports, as well as when the generated target
is part of specific IP ranges the malware author chose to skip. The
excerpt shows that in case of an IP address on the local loopback
address (127.0.0.0/8), the 15.0.0.0/8 and 16.0.0.0/8 net blocks a new
value is drawn. These lists are hardcoded in the source, figure 2
shows a truncated list for readability.

3 RELATED WORK

Over the past two decades, security researchers have tried to iden-
tify, analyze and mitigate botnets. One of the first of its kind was
Cooke et al. [16], who demonstrated that the activity of botnets may
be captured and analyzed by deploying honeypots. While research
has studied botnet identification and mitigation, limited focus has
been put into analyzing why some botnets are more successful than
others, and how the increase in botnets has prompted botmasters
to compete with each other for control of devices. The relative ease
to build botnets and the disruptive power they possess rallied re-
searchers to create detection and mitigation methods for this threat.
Although many methods have been proposed [11, 22, 27, 32, 41, 42],
the continuous evolution of botnets remains a constant challenge
for the disruption of these networks [9, 23, 30, 36, 38].

One such evolution is the use of poorly configured Internet-of-
Things (IoT) devices to build a botnet, which has since gained a
lot of attention of the security community [26, 29, 31, 34, 35, 45].
When the source code of the IoT-based botnet Mirai was publicly
shared [5], new actors could bootstrap their own botnet with ease.
Antonakakis et al. [8] gave the first comprehensive understanding
of this botnet and the effect of the shared source code, describing
that new, specialized variants spawned off from Mirai. We build
on this large foundation of studies to show the impact of these
evolutions, and how botmasters evolve to trump their competition.

While the source code leak of Mirai enabled many actors to join
the IoT game, the raised awareness of these new threats prompted
device owners to protect their devices [15]. As a result, the share of
devices available to actors has decreased. As the scale of a botnet
is important for its monetization [13], by for example using the
computation power of infected devices for cryptocurrency mining

[10], botmasters have found an increasing number of ways to infect
devices. While new infection vectors have been added to also the
descendants of Mirai [8], the most commonly probed service is
still the telnet port used in the original version of Mirai [24]. The
impact of these evolutions on the size and geographic distribution
of botnets has yet to be evaluated in the scientific community.

Several works have analyzed the structure and infrastructure
behind the original Mirai IoT botnet. [26] show the communication
pattern between Mirai bots and loader, and show how Hajime
has evolved beyond the original Mirai. [44] performed a forensic
analysis of the original Mirai botnet, among others on encoded user
credentials. The authors call upon further research to focus on the
customizations of Mirai to find these artifacts in them as well. [29]
has provided an overview of a handful of Mirai variants, among
them Hajime, Persirai and Brickerbot, show how these variants are
used and how they have changed their infection behavior from the
original Mirai botnet. Furthermore, [17] found there to be many
different password combinations in use by various IoT malwares,
[19] showed a link between password lists and used tooling during
brute forcing. Similar to the other related work, these papers have
also not identified the differences in success between botnets.

Other IoT botnets have also been examined by the security
community, with [25] analyzing the Hajime botnet in-depth, [40]
surveying the BlackIoT botnet and many reports from industry
[20, 33, 37, 39]. Similar to the works on the original Mirai botnet,
these papers focus on one botnet and do not analyze the effect of
multiple botnets competing for the same IoT devices.

In this work, we go beyond the state of the art by answering
two major questions that were put up but remained unanswered
in previous work. First, what is the interaction and competitive
behavior of the plethora of IoT and specifically Mirai malware
strains in the wild? And second, which factors determine how
successful a particular malware can spread? We extend the work of
Antonakakis et al. [8] and in this paper additionally investigate the
evolution of Mirai-based botnets and how these adaptations relate
to the regions they infect. We do this by introducing a novel way to
identify the exact moment a device was compromized, a technique
that we also use to track the lifetime of an infection, which allows
us to accurately trace the infection characteristics of Mirai and its
descendants.

4 DATASET

The analysis in this paper is made possible through the combination
of three datasets listed in table 1, each capturing a different aspect
of the world-wide phenomenon of an IoT botnet. First, we use a
large network telescope to capture the scanning behavior at scale of
infected Mirai instances looking for other vulnerable hosts. Second,
we operate an installation of 7,500 honeypots to determine which
particular strain an IoT device is infected with. And third, we use
operator netflows to assess the behavior of the botnet at large. We
will describe each of these datasets in more detail in the following.

Telescope. As soon as a device is infected by a Mirai variant, it
immediately starts scanning the Internet for other vulnerable hosts.
This scanning routine is based on specifically crafted and injected
packets, and thus displays some implementation particularities.
For instance, the TCP sequence number will always be set to the

Dataset Size
(Jan-Mar 18)

Purpose

Telescope 1.2 TB
Honeypots 213 GB

Infected devices, RNG analysis
Variant+behavior identification, credentials,
staging servers

Verification and coverage analysis,
blacklisting analysis

Table 1: Datasets used in this study.

Netflows 569 GB

User agent mam

%

Honeytrack

Network
telescope

of unused

IP addresses

ﬂ&

Figure 4: The Honeytrack system routes compromization re-
quests into a separate, virtualized environment.

destination IP, and on startup a Mirai instance picks random values
for window size and source port it will use for every packet until
the infection is removed. This allows us to link incoming packets
to those potentially sent by Mirai.

In order to confidently arrive at an estimate how many and which
devices are potentially infected by Mirai, we use a large network
telescope consisting of three partially populated /16 networks with
~65,000 IP addresses. As dark IP addresses, these addresses will
only receive scans and Internet backscatter, which can be easily
separated based on the TCP SYN or SYN+ACK flags [12]. As Mirai’s
target selection is random, the large size of the telescope — we
monitor about one in 65,000 IP addresses on the Internet — will
allow us to quantify and track how long infections are active.

The Honeytrack IoT system. While the telescope provides
a basis for counting and tracking a particular infection based on
header values, it does not reveal which malware strain has currently
infected a device. For this, we developed a distributed honeypot
system, consisting of an endpoint agent and a backend environ-
ment visualized in figure 4. The agent listens on TCP port 23 and
transparently tunnels incoming packets to an environment where
IoT devices are emulated. Incoming requests are randomly allocated
to one of eight system images (based on the most common ban-
ners in a Censys telnet survey), exposing a fully functional (high
engagement) but virtualized IoT device. Once a connection is made,
the same IP will always be be connected to the same device again,
which is subsequently serialized to preserve state if the attacker
would be coming back.

Over a period of 6 weeks, 7,500 honeypots were deployed in 3
home ISP networks, 2 network ranges of a public cloud, as well as
three network ranges of an enterprise network where they were

interleaved on unused IPs between active systems, so that the hon-
eypots would blend in. For this permission of the network owners
was sought via the established approval mechanisms. The instal-
lation recorded a total of 300,000,000 login attempts from 203,920
unique sources, which during the brute forcing would reveal their
hard-coded password list as well as the malware strain. This is pos-
sible as the Mirai botnet does not immediately test whether it has
successfully logged in with one of the passwords it has sent. Instead,
the malware sends a username/password combination followed by
a set of commands, the last one being /bin/busybox MIRAI to the
tested device. This has two purposes. If the username/password
combination was correct, the command string gets executed. If
none of the credentials worked, the busybox command is just an-
other username. If the credentials were correct and the command
executed, a router running busybox would respond with “MIRAI:
applet not found”, while a host without would throw an error. Mirai
thus knows from the response whether a credential was correct and
the system runs busybox. When later botmasters recycled Mirai’s
source code to change their own IoT variants, they changed the
busybox string. By providing a login and a working shell environ-
ment, we can thus track with Honeytrack which variant attacks,
and whether it was modified to contain different or new credentials.

To assess the role of Mirai and its variants in the entire spectrum
of actors targeting telnet and the IoT, we tracked all source IPs
that scanned or attempted login over the entire observation period.
87% of all source IPs exhibited Mirai’s special way of crafting pack-
ets, thus making this particular IoT malware family the dominant
player and most relevant phenomena in the IoT malware arena. For
this reason, we have made Mirai and its variants the focus of the
discussion in this paper.

Netflows. The above two datasets provide a view which mal-
ware strains are currently deployed at which IoT device around the
world. To also understand what these devices are actually doing and
how the support infrastructure works we also make use of netflows
from a Tier 1 network operator. To preserve the privacy of the end
users, the source and destination IP addresses are masked using the
prefix-preserving anonymization scheme presented in [43], proven
to be semantically secure. This AES masking key is only known to
the operator, which does provide us with a mapping of IP addresses
that attacked us to their anonymized counterparts. The data access
procedure was cleared with the corresponding protection authority
of the operator. This setup protects the identity of particular clients,
but at the same time does allow us to understand in which networks
and countries particular variants are raging.

5 ATTACKING A LOW ENTROPY PRNG

Although the PRNG of Mirai is relatively simple, it creates good
quality output. The cycle length has a period of 2°° — 1 and the
output passes the Dieharder test suite [7, 14]. Still, LFSRs are not
equivalent to cryptographic RNGs and inherently vulnerable, and
the lack of a suitable output transformation effectively leaks the
internal state via the generated randomness. If enough consecutive
bits become observable, it allows the prediction of future results.
The LFSR used within Mirai depends on four internal state-
keeping variables, which means that if we were to learn four con-
secutive random values we could predict all future ones. Observing

four complete consecutive values is however impossible, since the
rand_next () function is used not only in the packet generation
but also elsewhere, and the 32-bit output is truncated to 16-bits
when setting the IP ID or source port. If we were to obtain two
Mirai scan packets back-to-back, we would thus learn twice 32 bit
RNG output from the destination IP and twice 16 bits from the IP
ID. However, as IP addresses are hit randomly, it is unlikely that
two consecutive packets hit our telescope or honeypots. Still, as
two subsequent calls to rand_next () are used in the creation of a
single packet, we can efficiently confirm a correct state guess as the
likelihood to obtain a 32-bit and a 16-bit match is vanishingly low.

Attacking the seed. Any PRNG is only as good as the entropy
it has been seeded with. Even a cryptographically-strong PRNG
can be broken when initialized with (largely) predictable data. Such
insufficient entropy is another problem in Mirai’s home-grown
design. Upon startup of the thread, the router fills the internal state
variables with four values: (1) the epoch in seconds, (2) the process
ID, (3) the parent process ID, and (4) the number of clock ticks since
the program was launched. In theory, the combination of these
four values could provide 94 bits of entropy on a 32 bit system. In
practice however, the entropy of the random numbers is lower due
to a number of conceptual and implementation mistakes:

o time(NULL) returns the time in seconds since January 1,
1970. As Mirai immediately starts to send packets at a high
rate, the startup time will be very close to the time of the
first arriving packets, especially in a telescope. Even if we
very conservatively assume that the device has been infected
for 24h before we see the first packet, this would imply a
mere 16 bits of entropy. Our measurements have shown this
to be much shorter in practice, with the first attack packets
reaching us on average within 15 min after startup.

o Before the RNG is initialized, the process is forked to create
a dedicated thread for scanning. As a fork is essentially the
start of a new program, the number of clock ticks elapsed
starts at 0 for the child process. By the time the RNG is seeded,
only four instructions have been executed. This reduces 32
bits of potential entropy to just a handful of bits. In glibc prior
to version 2.18 which is frequently used in IoT devices, the
resolution of clock() was limited to a granularity of 10,000
ticks. Thus, possible values at this stage in the program are
either 0 or 10,000, reducing the entropy to just 1 bit.

o The state y is set to the process ID XORed with the parent
process ID. While both process IDs are 15 bits, the combina-
tion of both also has 15 bits of entropy.

Due to these issues the 94-bit seed has in practice only 32 bits
of entropy. We can analytically derive which bits in the four reg-
isters actually contain entropy, however given that LFSRs can be
efficiently computed, it is trivial to brute force the remaining 32
bits and evaluate the sequence to find a value pair where the 16
bits used in the source port and window size matches the output.

As the source port and window size only provide the last 16 bits
generated, multiple seeds in our search space will generate these
numbers in correct succession. To verify which of the matching
combinations is the actual seed, we can generate the sequence
of numbers and verify if this matches packets coming into the
telescope. In these sequences we can identify whether an IP ID and

Variant Hosts ‘ ‘ Variant Hosts

1 MIORI 75,249 6 MASUTA 5,338
2 MIRAI 62,235 7 NGRLS 5,113
3 JOSHO 23,487 8 SORA 4,631
4 daddyl33t 12,583 9 RBGLZ 4,076
5 Cult 5,621 10 OWARI 2,201

Table 2: Unique hosts for the top 10 advertised botnets.

destination IP address are generated consecutively, and repeat the
process until we have only one candidate seed left which is the right
seed. In most cases, we only have to generate the sequence until
the first IP address in order to find the correct seed. Generating
the sequence until the first observed IP address is a process that
will terminate for the correct seed, but for incorrect seeds it will
run in the worst case indefinitely. The number of steps we have
to take depends on the statistical likelihood to be hit by a Mirai
infected device, and as our telescope contains more than 216 1p
addresses, a fully random scan would target one of our IPs after on
average 21° steps. For 99% certainty that a seed is not correct we
can stop our verification if it does not generate the first observed
combination from the telescope within 22 steps. Program execution
can therefore be halted soon without potentially loosing candidate
solutions, and yields the seed within 100 milliseconds.

6 MIRAI'S BATTLE OVER THE IOT

The attack on the random number generator and the ability to
efficiently compute the seed value allows us to characterize the
current state and behavior of Mirai infections worldwide. When
receiving scan and brute-forcing attempts into our telescope and
honeypots, we can determine the exact moment when a particular
10T device was infected. Since packets have the same random source
port and window size, we can relate all subsequent interactions to
a particular infection of which we know the variant type from the
honeypot interactions. Finally, as soon as no further connection
attempts appear within the expected inter-arrival time, we can tag
the device as cleaned again, due to a reboot or being patched by the
owner. We will use this method to look at the lifetime of infections,
first the infection characteristics in general, and second operational
aspects such as the regional biases and other modifications that
have been introduced into the source code by later botmasters.

In total, we received scanning and credential brute forcing from
203,920 hosts that matched the Mirai fingerprint. This number is
significantly lower than the peak size of Mirai in 2017 [8], but we
find a similar total number as the 200,000 - 300,000 reported by
[8]. While our honeypots would welcome any telnet traffic, we see
that with 87% of all telnet compromization attempts, Mirai and its
siblings are the dominant player in the IoT malware arena. Table 2
lists the top variants and how many hosts were observed in our
study, the largest one infecting more than 75,000 hosts. We have
identified 39 variants in total, with only the top 10 being advertised
from more than 2,000 hosts during the duration of our study. The
full list of variants covered in this paper is in the appendix.

o
o

Fraction

I
>

0.2

0.0

2018-01-28 2018-02-04 2018-02-11 2018-02-18 2018-02-25
Time (Hour)

Figure 5: Marketshare of advertised variants.

6.1 Infection characteristics

As Mirai spreads as a worm, the growth of the infections is in
principle exponential, but is naturally bounded by the total number
of vulnerable machines. After the rapid expansion, the infection
will therefore reach a steady state or die out depending on the
parameters of injection and curing. Indeed, Antonakakis et al. [8]
show that Mirai rapidly grew in size at the beginning, but after
a while the total number of infected devices fluctuated between
200,000 and 300,000. When we measure Mirai a year later, we still
find the ecosystem of Mirai-infected IoT devices in a steady state,
except the infected population having significantly decreased.
Epidemiologically speaking, the memory-bound infection fol-
lows a mixed SIS (Susceptible-Infected-Susceptible) or SIR (Suscepti-
ble-Infected-Recovered) process [28]. When we measure the infec-
tion rate, we see that on average 27,182 devices are newly infected
each day with a standard deviation of 18, 381. With the curing rate
being almost identical — 26, 757 devices are cleaned up every day
with 19,153 as standard deviation —, it is clear why the ecosystem
is in a steady state. We empirically determine a basic reproduction
number of Ry = 1.0033, which is surprisingly low given the aggres-
sive scanning and infection behavior, and barely enough for the
worm to sustain itself. As Mirai targets IPs randomly, it is highly
unlikely for pockets of undiscovered, vulnerable devices to still
exist, hence new infections can only come from newly introduced
vulnerable devices or from taking over devices from someone else.
Indeed, we find that the battle over the Internet of Things is
largely a zero-sum game, with significantly fluctuating market
shares between variants. Figure 5 shows the distribution of infected
devices over the largest botnets, which surprisingly shows that the
original Mirai is today only one player among many, and variants
that evolved from it have gained significant market share. Surpris-
ingly so, this competition between Mirai variants has received only
little attention to date. When we count the number of devices in-
fected by a particular strain at any given moment in time, we see
momentary explosions in activity, where suddenly a lot of hosts get
newly infected by a variant. As shown in figure 6, this is especially
true for smaller strains such as Cult, MASUTA or OWARI, but even
the main players in the ecosystem experience frequent jolts in in-
stallation size. These spikes are counterintuitive, as brute forcing
from thousands of infected hosts towards random IPs should lead

MIRAI | I T T T
MIORI {1 1 TI010 109 | OewA
daddy!33t{ || [NV TR I

ARUMA - NN

LU I 1 Il.o

\
LTI TN AR 08

10l

-3 N NN AN AN [TV I CTRIRCE TCNTUONNN OO
A A A

» EXTENDO] LI TN R -0.6
& HAUME-THIE T [T T AT LT T TR 11 AU
& JosHo{ [N 1| NI Il Il LT AR T {AANSMRRINIIN [(0010 1
MASUTA R 11 Il | B A AT | -0.4
NGRLS MNTTTTRITT T 11
OWARI I AR T I TInROOm - |
RBGLZ | [TDTEN UM 02
SORA Il
xowez N0] ‘ ‘ ‘ I 00
23-01-2018 23-01-2018 23-01-2018 23-01-2018 23-01-2018 23-01-2018 23-01-2018 23-01-2018 23-01-2018
Time (Hour)

Figure 6: Lifetime distribution of variants over time, normalized per variant. Red shows peak per hour, blue shows little hosts

being infected by the variant.

to a continuous influx of new infections, and can be explained with
the loaders and reboots as we show later.

6.1.1 Transitions between botnets. While new IoT devices are con-
stantly being added to the Internet, awareness and improved secu-
rity (such as omitting open admin interfaces or default credentials)
should over time reduce the attack surface. This would mean that in
order to increase their botnet, botmasters could in the long run only
grow by compromising existing devices, potentially already under
the control of another botmaster. Indeed, we already observe this,
with infections rarely occurring on “fresh” devices and 88.5% of all
new infections on systems that have been exploited previously.

Evidently, botmasters do not want to share an infected device
with other botnets, so when a botnet infects a device, one of its
first actions is to kill processes such as telnet and ssh that can be
used to infect this device. While this ensures that the device cannot
be accessed after infection, once the infection is removed from the
device - typically after a reboot - it will be vulnerable again. Such
reinfections happen comparatively fast, the average duration to be
reinfected is 1 day and 9 hours, with a standard deviation of 4 days
and 7 hours. We determined the type of device based on daily IPv4
banner grabs from Shodan and Censys. Surprisingly, we see that
routers frequently reset in practice, and remain infected only on
average 12 hours (standard deviation 89 hours). Still, takeovers can
happen if the telnet port was not exposed to TCP port 23 but to
port 2323. While Mirai brute forces on both ports, it only eliminates
programs listening on port 23. These devices can hence be “stolen”
from other adversaries.

Figure 7a shows such takeover behavior for one example device.
The device is reset on multiple occasions, indicated by the red tri-
angles, but is almost immediately being reinfected. From the figure
we see that this particular device is mostly re-infected with the
same malware, but frequently another variant takes over. In the
time between reboot and reinfection, IoT devices are up for grabs.
Figure 8 shows the transition behavior between infections for all
devices after a reboot for four of the major variants encountered.
It shows that botnets do at a global scale lose some IoT devices to-
wards other major players, however in most cases the re-infections
happen with the same malware strain. This is made possible as
successful login attempts are reported to the C&C server, thus pro-
viding the botmaster with a list of good credentials and facilitating

easy reinfection. This feature was already part of the original Mirai.
As the reinfections by the same malware are so successful however,
it might be the case that botmasters actually use the alive pings
sent to the C&C server to monitor whether a device is still active
or has dropped off to infect the device again. By monitoring and
reinfecting devices in this manner, they could preempt another
botnet from taking over the device. While we do find indications
for this hypothesis given that the average time for a device to be
re-infected with the same malware is only 1.5 hours as opposed to
the average infection time of 1 day and 9 hours, it is impossible to
prove this conclusively by merely observing the ecosystem.

Figure 8 however also shows that a large portion of devices are
never infected again after cleanup, denoted by an edge going to
the “end” node. As it is unlikely for a device to not be invaded or
re-infected, the device is most likely secured by its owner. In total,
175k devices are infected by only one variant over the duration of
this study, whereas 28k devices were taken over at least once.

Without information about “infectable” devices, the only way
for botnets to locate victims is based on port scanning. As Mirai
performs scanning based on randomly-chosen candidate IPs, the
largest botnets should be most likely to find these restarted devices
to add them to their network, and would therefore need the least
time to find and infect a device that has just been cleaned up by
another malware. Figure 9 shows the probability density function
for different variants, and shows that the larger the variant, the
quicker it takes over a device. Size does matter: we find a strong
negative correlation between the original size of a botnet and the
time it takes to accumulate new devices and grow, that with a
Pearson coefficient of -0.501 (p < 0.01) is able to explain half of the
difference in infection behavior between strains.

6.1.2 Concurrent infections. To gain exclusivity over a device, the
Mirai malware shuts down all processes running on port 22, 23 and
80, and binds itself to these ports to prevent other processes from
doing so. While this is an effective way of keeping others out, it does
not fully eliminate the possibility of other bots attacking certain
devices. As telnet is a protocol that receives much unsolicited traffic
[18], network operators sometimes bind their telnet not to port
23, but to port 2323. The original Mirai takes this into account
by scanning port 2323 in every 10th scanning packet. While the
scanning part takes this into account, the port killing part of the

v—w
MIRAI ariant w T TY ——— &
® dwickedgod
:; BEUMA e
= @ daddyl33t
- AKUMA 1 @ MIRAI | L1
dwickedgod e il

Jan 31 Feb 01 Feb 02 Feb 04 Feb 05 Feb 06 Feb 07
Time

(a) Devices get cleaned up and get reinfected by the same malware
variant, until another variant takes over on the restart of a device.

REPE N T TV @ee camm
variant
L loskg{ @ ALMA .
g HWIFZ
R ® JOSHO
B ® MRAI
AKUMA el —

Dec 23 Jan 03 Jan 15 Jan 26 Feb 07 Feb 19 Mar 02
Time

(b) Concurrent infections on 1IP. The first started 10 days before the
second, in mid Jan our setup launched and registered both variants.

Figure 7: Infections over time against IP addresses, every plot is a distinct IP address. Green triangles denote a new infection
(based on source port/ window size), red triangles mark the end of an infection.

Figure 8: Device transitions between botnets in percentage
of out-degree over the entire data collection period.

0.00012 —— Other
JOSHO
0.00010 MIORI
SORA
0.00008 daddyl33t
E MIRAI
0.00006 Cult
OWARI
0.00004 MASUTA

.ﬁ\ -
0.00002 M

0.00000

Density

0 5000 10000 15000 20000 25000 30000 35000 40000
Seconds until reinfection

Figure 9: Probability density function of the time for a vari-
ant to take over a device previously “owned” by another.

source code does not. Therefore, devices using port 2323 as their
telnet port will continue to present an open port even after infection.
Figure 7b shows a host being infected with two variants at the same
time, XWIFZ and AKUMA, before restarting and getting infected
afterwards with other variants. In total, we observe 8.9% of the total
infected devices being infected by multiple variants at one time.
Note that this behavior is the result of a co-infection and not of two
devices behind a NAT, when the packet generation of both stop
simultaneously. In [21], we further elaborate on the issue of NATs
and show how the faulty RNG can be used to identify NATs, and
thus can be used to quantify IP churn across the Internet.

While this oversight in the Mirai source code transfers to most of
its descendants, several malware authors put in effort to understand
the inner workings and have removed this oversight from their
code base. When looking at the variants present on concurrently
infected devices, we can identify several variants that do succeed in
killing their competitors and locking them out. While MIORI and
JOSHO are present on 5680 and 3726 concurrently infected devices,
we find no rivals when MASUTA and SORA are running, showing
them to be more effective in stopping competition.

6.1.3 Compatibility of Malware. While botnet size has a significant
influence on its ability to infect new victims, we also see major
differences in infection characteristics between different countries
and autonomous systems (ASes). Figure 10a shows the duration a
particular strain has control over a given device until it reboots, for
a selection of ASes which more than 1,000 compromised devices.
While the average duration of an infection is relatively short, there
are major outliers where a large share of IoT malware can hold on
to devices for up to a week or longer. As can be seen on the box
plots, average values of infection times are not a good measure to
understand the behavior of IoT malware, given the sheer number of
these outliers and their deviation from the mean. Not only are the
distributions highly heterogeneous, but we see also the emergence
of clusters, indicating that there are groups with similar behavior.

We can clarify this behavior better if we look at infection char-
acteristics not only from the perspective of the victim device, but
in symbiosis with a particular malware strain. Figure 10b breaks
down the infection duration for one of the ASes with large out-
liers. Here, we see that the time a particular malware strain holds
a device captive is vastly different. In case of AS9121, MIORI and
MASUTA are largely unsuccessful in maintaining a foothold and
devices reboot on average after 106 and 32 minutes. The fact that
in 99% of cases neither malware runs longer than 239 minutes on
vulnerable IoT devices within this AS before the device resets and is
later infected by something else, suggests some incompatibility of
this malware or the way it is used with a particular type of host pre-
dominantly used in this network. We can rule out that this behavior
is the result of coordinated cleanup activities or some centralized
reboots due to a power outage, as devices eventually and at differ-
ent times fall victim again. As we see from the graph, it appears
that JOSHO is a more suitable IoT malware for this AS, while the
best performance is achieved by Hajime with an average infection
duration 9 times larger than the average for this AS, and even the
shorter Hajime infections outperforming the best performers of

* . ‘ [.
v RN :
‘ H N 4 .
4 Weeks ' * i
i o '
N 3 Weeks ¢ A H + % -
E i $.
= 2 Weeks : 4 .
1 !
1 Week * H -4
MIERES NI IS RRTININ
Do A DD D DO DD QDD o
WS 5 W05 AP A0S 5 D D 9 A
FEEFEF S FE S S
AS number

(a) Infection times per AS with more than 1,000 infections, showing
large differences between the infection times of different ASes.

Figure 10: Infection times

the other IoT malware by far. We find similar heterogeneity for
many ASes and malware types. It seems that malware frequently
causes issues, and reboots of IoT devices can be attributed not just
to external influences (user reboots, power outages, updates, etc.)
but to a significant degree to the malware itself.

6.2 Customization and Evolution

Different types of malware seem to work better or worse depending
on the AS devices are located in. Once an IoT device reboots, it is
just a matter of time before it is re-discovered and reinfected. As
shown previously, the larger a botnet is, the faster it can locate
routers to potentially infect. This makes it hard for new botnets
to enter the “market” and compete successfully for vulnerable de-
vices. In response to this, it would make sense for botmasters to
customize their strategy where to look for victims, and localize
productive niches to exploit [10]. Such customization could on the
one hand be done by only targeting the address space of particular
ASes, or on the other hand be done based on curating credential
lists. Using open-source intelligence, actors could identify default
username/password combinations for devices that occur frequently
but are not so mainstream that other botmasters might target them.

6.2.1 Regional biases. One way of creating a niche in which a
botnet can thrive is by targeting devices not in demand by others.
In the case of Mirai, which sole attack vector is the use of weak
credentials, the way to target new devices would be the addition of
new username and password combinations which no other variant
uses. An effective approach would be to include credentials that
are used by a significant number of devices as their default. With
devices such as routers deployed in bulk by telecom operators to
their customers, the location of these devices can be heavily bi-
ased to a region. When a variant targets such a device, it would
therefore grow its influence in a specific geographic location. In
figure 11, the distribution per country is plotted for different Mi-
rai variants. The biggest botnets, MIORI and Mirai, occur widely.
Others however, such as AKUMA and MASUTA, are heavily biased
to Japan and Vietnam respectively. This imbalance stems from the
credentials: AKUMA includes 17 unique username and password
combinations not seen in other variants, among which the com-
bination “admin,oelinux123”. This combination is targeted at the

4 Weeks

3 Weeks

Time

2 Weeks

¢
|
i .
1 Week M
‘
N ‘
1 Day) i . %
_—L— S E— =
NG

(b) Infection times of different variants on AS9121, showing large
differences of variants within ASes.

of different ASes and variants.

BN ER mem DE W T KR RU
_Emm CN e N - P o PK

. TR
Y
08 I I I
0. . -
.]
0.

0z

Freguency
@

=

e =] < T = = = =t - ™ w
E 5 S 8 2 £ 3§ B E L §
§ 2 & = % % B &

Wariant

daddyl33t
dwickedgod

Figure 11: Regional infections per variant, normalized over
the total number of seen IoT devices in a country. Several
show heavy biases, mainly due to targeted password lists.

EE 4GEE HH70 ROUTER, which is a mobile WiFi router especially
popular in Japan. Masuta on the other hand has only one unique
combination: “root,00000”, the default credentials used to login to
an old DVR. After adding this, the MASUTA botnet took over 2645
hosts in Vietnam in one single day, growing their botnet by a factor
4 from 810 infected to 3455 hosts.

6.2.2 Increasing your market share. Specializing on ASes pays off
when one is able to find networks with a large number of vulnerable
devices. After the initial foothold, variants seem to be effective in
maintaining the majority share of an AS, making the initial foothold
even more important. Botmasters can optimize their botnet for cer-
tain ASes by changing the credential list, and removing those that
will not be successful as bots execute a limited number of login
attempts. By doing so, the effectiveness in other ASes might be
impacted due to the deletion of important credentials. For MIORI,
Mirai and JOSHO, we have observed infected devices belonging
to the same variant from several ASes brute forcing our honey-
pots using different password lists, showing that malware authors
diversify and launch different versions to maximize effectiveness.

Name R P

MASUTA -0.064 <0.1
Cult -0.086 <0.05
OWARI -0.120 <0.001
daddyl33t -0.124 <0.001
XWIFZ -0.140 <0.001
dwickedgod -0.170 <0.001
MIORI -0.172 <0.001
MIRAI -0.179 <0.001
HAJIME 20188 <0.001
JOSHO -0.206 <0.001
OBJPRN -0.663 <0.001

Table 3: Correlation between botnet size and its growth.

AS R p

Frontier Communications of America Inc. -0.519 < 0.001
asn for Heilongjiang Provincial Net of CT ~ -0.511 < 0.001

Ratt Internet Kapacitet i Sverige AB -0.501 < 0.001
Bredband2 AB -0.484 < 0.001
Bredbandsson AB -0.475 < 0.001
Viettel Group -0.129 < 0.001
OPTAGE Inc. -0.127 < 0.001
Jupiter Telecommunications Co. Ltd. -0.123 < 0.001
Jupiter Telecommunication Co. Ltd -0.119 < 0.001
NTT Communications Corporation -0.104 < 0.01

Table 4: Correlation between the size of an AS and its growth,
ordered by coefficient for the top and bottom 5 ASes.

Another way to grow a botnet is by better targeting the scan-
ning activity towards vulnerable devices. While Mirai chose to
send packets to either port 23, or with 10% probability to 2323, we
observe botmasters removing either one of the two to make the
scan more focused towards one port. Removing 2323 does in theory
make sense, as Shodan reports there are more than 20 times as
many devices on port 23 than on 2323. We classify a host actively
avoiding a port when we have observed 44 packets but none on
the considered port, as this gives us a 99% chance the port should
have been observed, and find that mainly variants of Mirai and
JOSHO avoiding port 2323 with 7484 and 4558 hosts only scanning
23. On the other hand, we find 105 hosts belonging to MASUTA
only targeting port 2323. For hosts avoiding port 2323, we find no
difference in distribution over ASes.

6.2.3 Watching and learning from your competitors. If such strate-
gies are fruitful and actors are aware of the success, we would as-
sume those with a competitive advantage to proliferate. As unique
passwords are one success factor, we tracked how Mirai variants
introduced new credentials during our study, and whether others
would adopt these combinations to their own code base.

Figure 12 shows password adoption behavior of the largest Mi-
rai variants, and the smaller but particularly noteworthy strains
MM and OBJORN. The size of the connections shows the amount
of passwords that get transferred from one to the other, with the
color of the edge denoting the variant that pioneered the pass-
word. What immediately springs out is that all variants except
Mirai engage in password adoption, but that the two largest botnets
predominantly operate on credentials they have pioneered them-
selves. Mirai does not introduce external credentials at all and the
other large player MIORI borrows a minor share only from Mirai.

OBJPRN

Figure 12: Passwords adoption between variants. Qutgoing
edges denote a credential adoption, edges are colored in the
color of the variant they came from.

MIRAI- \ '0'75

MIORI I /] 10.60
 dadayizzeJll UL DU (DM
£ cu 093
3 exvewo - NI 0.30

T
joswo Il INNY [0 ' DN VORI TN (1
e [N T, I°-15

sor. IO,

23-01-2018 23-01-2018 23-01-2018 23-01-2018 23-01-2018
Time (Hours)

0.00

Figure 13: Infection distribution for AS4134 per hour, in per-
centage of infected devices per variant. The AS is highly
dominated by MIORI, others only hold a small percentage.

Overall, smaller botnets are generally much more likely to pick up
passwords (MATOS/MM/OBJPRN) rather than being innovative
on their own. Even more surprisingly, we see that copying behav-
ior follows some form of hierarchy. The large botnets only feed
from other large botnets but not smaller ones. There are also clear
preferred relationships, for instance passwords used in the variant
Cult predominantly originate from JOSHO.

6.2.4 Keeping the net alive. If a large botnet is amassed, the worm-
like structure of the botnet should ideally be able to sustain the loss
of devices by growing at least as fast as they decay. The authors
in [8] refer to this as the stable state and find that at the end of
their measurement period, the overall size of the Mirai botnet was
shrinking. When looking at the different strains, we also observe
all variants to shrink over time, and there is an overall negative
correlation between the size of a botnet and its growth (r =-0.16, p <
0.01). Table 3 shows these correlations per variant and shows large
differences between the variants, where large ones such as Mirai,
MIORI and JOSHO are below average, but others such as OBJPRN
are much less likely to survive. The survival rate of a botnet seems
to be dependent on the time it takes for bots to find a victim to brute
force, giving a correlation of r = -0.516 with p = .02 between the

#a “« Loading server @ . w

v o —

v (2) e >
O - 0

"""") Vulnerable device
Compromised device

Figure 14: In Mirai’s loading infrastructure, bots identify de-
vices where they can log in (1). These are then reported to a
loading server (2), which then performs the infection (3).

correlation scores in Table 3 and the average time between brute
force attempts on our honeypots from a single infected host.

Table 4 shows the growth rates of the top and bottom performing
ASes in our study. We confirm the findings by [8], who showed a
decline in the number of bots on certain ASes. We have not observed
ASes with a positive correlation between the amount of infected
devices and the growth of this number. This shows that the botnets
are slowly losing their grip on the IoT devices.

6.2.5 Loading infrastructure. Devices infected by Mirai are used
to scan the Internet to help infect new devices by brute forcing
passwords. After the correct credentials are found and the device
has logged in, the credentials are sent to a server responsible for
the infection of new devices [8, 26]. Figure 14 shows this process.
By making a centralized server responsible for the infection, it is
easier to update the software loaded onto new devices, or customize
infections if new devices are discovered.

Identifying these loading infrastructures is trivial, as they always
immediately provide the correct credentials when they log in to our
honeypots, and never input false credentials. If infections would
occur from the infected devices themselves, these would need at
least several tries to guess the correct combination before loading
the malware onto the device. By identifying the bot that has suc-
cessfully brute forced the password that is later sent by the loading
infrastructure, we are able to identify which variant connects to
which loading IP address. Figure 15 shows IP addresses used for
loading the malware on devices and the bot variant responsible for
letting the server know the correct password. Each colored circle
represents a loading server, where the color indicates the variant it
spreads and the size the number of installations it does respectively.
Individual dots mark the IP address of an infected device, the line
to a circle which loading server it provided the credentials to. The
color of the line represents the malware variant the infected IP had
at that moment. We find that XWIFZ and AKUMA both use a large
number of loading servers relative to other malware strains. Even
more surprisingly, we see that a large portion of this infrastruc-
ture base is shared, as either a bot of AKUMA or XWIFZ has brute
forced a password correctly before one of these loaders logged in.
For MIRAI we can observe a few small clusters, using the variant
name MIRAI as its loader, while in the original source code [4] the
loader for MIRAI identified itself with the ECCHI string, which
means that actors also adapt the software in the backend.

Almost all variants use centralized loading servers, and are there-
fore prone to takedowns and IP-based blocking of enabling infras-
tructure. To limit the risk of a takedown or block, botmasters might
opt to regularly change their loading infrastructure by using for ex-
ample DNS. In practice however, we do not see this behavior in any

HWIFZ

AKUMA

MIRAI

RipPEEP

PUTIN

Fixed

QBOTV1

ECCHI
RBGLZ;rm;ACWCD
rm;daddyl33t

Figure 15: Identified loading servers for several variants.
Edges denote successful brute force attempts and are colored
by the variant of the brute-forcing bot.

centralized variant, as identified loading servers have been active
over the entire period our honeypots were active. Only two variants
have significantly changed their loading infrastructure, and use
the bots not only to scan but also to perform the infection, making
these botnets significantly harder to block. One of these botnets,
identified by eight random characters as variant name, spreads its
loading servers throughout the network and cycles them around,
making it hard to identify and block these loading servers.

Mirai’s source code included the original loader used by Mi-
rai, which consequently was copied by its descendants. As with
the password lists, the loading code has been altered by some of
the variants to remove indicators from the issued commands [3].
Alterations include the original ECCHI variant string, file names
created on the system, but also the entire loading procedure. These
alterations extend into the commands issued by the bots after a
compromisation, where some variants already request more data
from the device such as the "/proc/mounts" file. Table 5 shows the
changes made by different variant authors in these criteria, and
shows that full customization is rare. Additionally, the last two
loader services shown in figure 15 change their command structure
over time. We first identify the server “RBGLZ;rm;ACWCD” as
variant ACWCD, but over time the server changes the loader code
and its identifier. The loader server for “rm;daddyl33t” behaves
the same, first identifying with daddyl33t, and later changing the
commands sent from the infrastructure. Curiously, both modified
the identification string to include a command.

6.2.6 Honeypot evasion. In our discussion of the source code, we
have pointed out that Mirai skipped over IP addresses it randomly
generated if they would fall within a particular range. The original
Mirai blocked probes to multicast ranges or invalid addresses, such

Name Loader Loadvia Loader Bot shell

name bots commands entries
XWIFZ v
RipPEEP v v v
PUTIN v
HAJIME v v v v
daddyl33t v
8-characters v/ v v

Table 5: Changes in bot and loader code across variants from
the original Mirai source code.

o 5> W
& &“?’& @oe&?fowqy
Network Y:p Y§ \0 é\\ & o Qg’ O
. authors1/16 v v v Y
& authors2 /16 v v v v
& authors3 /16 v v v v v v v
T 165.227/16 v v v v v v v v
S 167.99/16 v v v v v v v v
© 17231/16 v v v v v v v
; 80.114/16 v v v v v v
é 83.172/16 v v v v v v v

Table 6: Honeypot locations hit by variants of Mirai.

as 0.0.0.0/8, as well as selected large organizational networks
such as the Department of Defense and the US Postal Service.

In order to remain undetected, and in an effort to speed up the
scanning process by skipping known IP addresses that are not of
interest, adversaries can update the blacklist to include these IP
ranges. To quantify to which extent malware variants update and
utilize blacklisting, we distributed our honeypot agents in 8 different
/16 networks assigned to Internet Service Providers, public clouds
and one enterprise network. By comparing incoming probes across
the different ranges coming from the same source during the same
infection period, we can quantify which Mirai variants update and
customize their blacklists. Table 6 lists a selection of variants and
the ranges we have observed them at. We clearly see that the largest
malware MIRAI, MIORI or JOSHO show no discriminative behavior,
but that smaller variants such as OWARI selectively exclude the
enterprise range. Cloud providers are attractive across all variants,
even though one would not expect to find many IoT devices in these
networks. The ranges of DigitalOcean (165.227/16 and 169.99/16)
are for example not excluded by any single variant.

This blacklisting behavior indicates that adversaries are con-
scious about where to find victims or where their activities might
be monitored. Multiple variants perform evasion, and the ranges
they evade are similar, which could mean that all of these actors
either research where infrastructure is located, or that locations are
shared among actors. While the first reason is hard to verify, we
have found evidence of these lists being shared online [6], labeled
with the exact institutions or organizations these ranges belong to.
Additionally, a plethora of blocklists that can be readily put into
source code exist online, which block major ranges of the Internet.

Verifying Blocklists. We verify whether a variant blacklists
additional IP addresses in two ways: First, as Mirai’s target selection
merely skips generated IP addresses if the target appears on the list,

we can use this feature and our ability to efficiently bruteforce the
seed to selectively test which blacklist an actor is using. Whenever
IP addresses are skipped the state of the RNG is advanced, and we
can now test whether we can break the seed and reproduce the
sequence of probing packets given one of the lists we could locate
online. Second, we use netflows from a Tier-1 operator to verify
that the bots do indeed never probe the particular IP ranges.

We find that some of the botmasters go the extra mile of updating
this part of the Mirai source code. Akiru, OWARI, RBGLZ and SORA
have adopted customized blacklists, whereas MIORI, AKUMA and
JOSHO all run with the original Mirai algorithm. Especially larger
variants are not homogeneous, and there exist not just one version
that identifies itself as Mirai. 93% of all hosts infected by Mirai
are running the original source, but 7% have adapted lists. Even
within these, we find differences in behavior, with some of them
blacklisting some of the ranges we monitor but not others, while
some versions block more extensively.

7 LIMITATIONS

In order to be detected by us, infected devices had to connect to
either our telescope or one of our 7,500 honeypots. As discussed
above, Mirai and its variants employ a blacklist, and it is possible
that there are variants that do not connect to any of the eight /16
networks we were present in. To assess potential blind spots, the
Tier1 operator collected the set of IP addresses that showed brute
forcing behavior on telnet on a given day, which we compared
against the list of hosts that brute forced us that day. This revealed
2.9% additional IP addresses that were targeting host on the Internet
via telnet but not present in our analysis, thus our study provides
an almost complete picture of telnet brute forcing, and with Mirai
accounting for 87% also a solid assessment of the Mirai ecosystem.

For this study, we define a malware as Mirai-based given distinct
features in the packet generation process, such as a TCP sequence
number - IP match, as well as the fixed window size and IP ID
fixed for the session. While later botmasters copied the original
Mirai source code, they also introduced modifications. These were
functional in nature, to introduce new features or avoid certain
ranges. It is possible that some modified the packet generation
itself, for example randomizing every header value with a RNG
not related to the original one. These variants are not part of our
analysis as they would not stand out based on structural features.
Given that the netflows reveal only very few IP addresses going
after telnet but not in our honeypot dataset, indicates that such
deep modification would occur rarely if at all.

8 CONCLUSION

After the source code of the Mirai botnet was shared, many new
actors have sprung up to take advantage of misconfigured IoT
devices. In this work, we exploited a flaw in the design and entropy
of Mirai’s RNG, allowing us to track the exact infection time of
a host as well as track how infections are evolving. We observe
a continuous battle over the Internet of Things among different
strains. We find that these IoT botnets on their own are not self-
sustaining, and that the success of malware variants depends on
their installation size, but also in how well they seem adapted to
occupy specific niches of vulnerable devices.

REFERENCES [29] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas.
[1] [n.d.]. DDoS attack on Dyn DNS. ([n. d.]). https://dyn.com/blog/dyn-analysis- 2017. DDOS in the IoT: M%ral and other botnets. Computer 50, 7 (2017), 80-84.
[30] Chao Li, Wei Jiang, and Xin Zou. 2009. Botnet: Survey and case study. In Fourth

summary-of-friday-october-21-attack/. : N ; -
[2] [n d.). DDoS attack on OVH. ([n. d.]). https://www.ovh.com/world/news/ International Conference on Innovative Computing, Information and Control (ICI-
articles/a2367.the-ddos-that-didnt-break-the-camels-vac. CI?‘ " h h Tadh . .
[3] [n.d.]. Hajime botnet analysis. ([n. d.]). https://www.infopoint-security.de/ [31] Joel Margolis, Tae Tom O >, Suyas Jac'l av, Young Ho Kim, ar}d Jeong Neyo Kim.
media/Botnet_Hajime_Radware_Analyse.pdf. 2017. An In-Depth Analysis of the Mirai Botnet. In International Conference on
[4] [n.d.]. Mirai scanner source code. ([n. d.]). https://github.com/jgamblin/Mirai- Softwqre Secun[’y and Assurance (ICSSA). . .
Source-Code/blob/3273043¢ 1ef9c0bbd 1bd9fede5317£7b797a2a94/ mirai/bot/ [32] Claudio Mazzariello. 2008. IRC traffic analysis for botnet detection. In The Fourth
scanner.c International Conference on Information Assurance and Security.

[5] [n.d.]. Mirai source code shared. ([n. d.]). https://krebsonsecurity.com/2016/10/ [33] Trend Micro. 2017. Persirai: Ne_w internet of things QOT? bot_net targets_ P
source-code-for-iot-botnet-mirai-released/. cameras. URL: https://blog. trendmicro. com/trendlabs-security-intelligence/persirai-

. e new-internetthings-iot-botnet-targets-ip-cameras (2017).
(6] EEIS/LZS;ZI’;S 4]::::;}};:53:_ﬁiﬁl{}lf;_il[:cs_]tile}::_p;Ziiﬁ;ﬁiﬁfﬁﬁ?ﬂ:ﬁﬁlmd{ [34] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto,

[7] [n.d.]. Tracking Mirai: An In-depth Analysis of an IoT Botnet. ([n. d.]). Master Tekahiro I_(asama, and Christian Rossow. 2015. IOTPOT: analyS{ng the rise of loT
thesis, Pennsylvania State University, 2017. compromises. In 9th USENIX Workshop on Offensive Technologies (WOOT 15).

[8] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, [35] "f':liaﬁlrr:)nKzga:i i:ggghfil;:;]:’;;s;‘;qz% gosI}:) 1t0 koat,' zsgzir;uhgf;tsuz(}?r’
Jaime Cochran, Zakir Durumeric,] Alex Halderman, Luca Invernizzi, Michalis li >, h 1 y i p . . yp
Kallitsis, et al. 2017. Understanding the mirai botnet. In 26th USENIX Security revealing current iot threats. journal of Information Processing 24, 3 (2016),

S ium. 1093-1110 522-533.
T At ' Stijn Pletinckx, Cyril Trap, and Christian Doerr. 2018. Malware coordination using

&
S

] Xsi?gigi?]ﬁilﬁ:’li oeb:ﬁg PDZ?[;;CSIE‘;:IH 21\(1)51\2] I’Flj;]:rflglori)xfisali:f;ott;?ﬁa:etg the blockchain: An analysis of the cerber ransomware. In 2018 IEEE Conference
bots: detecting the rise of DGA-based malware. In Presented as part of the 21st on Communications and Network Secu‘rzty (CNS)', -
USENIX Security Symposium. 491-506 [37] CP Reasearch. [n. d.]. Iotroop botnet: The full investigation, Oct. 29 2017. ([n.
[10] Hugo LJ Bijmans, Tim M Booij, and Christian Doerr. 2019. Just the Tip of the d).

'@
&

Mohammd Reza Rostami, Meisam Eslahi, Bharanidharan Shanmugam, and Zu-
raini Ismail. 2014. Botnet evolution: Network traffic indicators. In International
Symposium on Biometrics and Security Technologies (ISBAST).

T Seals. [n. d.]. Bricker bot follows mirai tactics to permanently dos iot devices,
Apr. 7 2017. ([n. d.]).

Saleh Soltan, Prateek Mittal, and H Vincent Poor. 2018. BlackIoT: IoT botnet
of high wattage devices can disrupt the power grid. In 27th USENIX Security
Symposium. 15-32.

Iceberg: Internet-Scale Exploitation of Routers for Cryptojacking. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
[11] James R Binkley and Suresh Singh. 2006. An algorithm for anomaly-based botnet
detection. SRUTI 6 (2006), 7-7.
[12] Norbert Blenn, Vincent Ghiette, and Christian Doerr. 2017. Quantifying the Spec-
trum of Denial-of-Service Attacks through Internet Backscatter. In International
Conference on Availability, Reliability and Security (ARES).

'@
20,

=
2

[13

Qiovanni Bottazzi and Qianluigi Me. 2014. The botnet revenue andel‘ In Proceed- [41] W Timothy Strayer, David Lapsely, Robert Walsh, and Carl Livadas. 2008. Botnet
ings of the 7th Inten?atlonal Conference on Secufzty ofInformatlorf and Networks. detection based on network behavior. In Botnet detection. Springer, 1-24.

[14] Robert G Brown, ank Eddelbuettel, and David ABauer. 2013. Dieharder: A ran- [42] Jing Wang and Ioannis Ch Paschalidis. 2016. Botnet detection based on anomaly
dom number test suite. Open Source saft_/vare library, under development, URL and community detection. IEEE Transactions on Control of Network Systems 4, 2
http://www. phy. duke. edu/" rgb/General/dieharder. php (2013). (2016), 392-404.

[15] Orcun Cetin, Calflos Ganin, Lisette Altena, Takah?ro Kasama, Daisuke Inoue, [43] Jun Xu, Jinliang Fan, Mostafa Ammar, and Sue B. Moon. 2001. On the Design
Kazuki Tamiya, Ying Tie, Katsunari Yoshioka, and Michel van Eeten. 2019. Clean- and Performance of Prefix-preserving IP Traffic Trace Anonymization. In ACM
ing Up the Internet of Evil Things: Real-World Evidence on ISP and Consumer SIGCOMM Workshop on Internet Measurement.

Efforts to Remove Mirai. In NDSS') [44] Xiaolu Zhang, Oren Upton, Nicole Lang Beebe, and Kim-Kwang Raymond Choo.

[16] Evan Cooke, Farnam Jahanian, and Danny McPherson. 2005. The Zombie [n. d.]. IoT Botnet Forensics: A Comprehensive Digital Forensic Case Study on
Roundup: Understanding, Detecting, and Disrupting Botnets. SRUTI 5 (2005), Mirai Botnet Servers. ([n. d.]).

6-6.) . . [45] Zhi-Kai Zhang, Michael Cheng Yi Cho, Chia-Wei Wang, Chia-Wei Hsu, Chong-

[17] Andre? Costin and Jonas Zaddach. 2018. ot malware: Comprehensive survey, Kuan Chen, and Shiuhpyng Shieh. 2014. IoT security: ongoing challenges and
analysis framework and case studies. BlackHat USA (2018). research opportunities. In IEEE 7th international conference on service-oriented

[18] Zakir Durumeric, Michael Bailey, and J Alex Halderman. 2014. An internet-wide computing and applications.

view of internet-wide scanning. In 23rd USENIX Security Symposium. 65-78.
[19] Vincent Ghiette, Harm Griffioen, and Christian Doerr. 2019. Fingerprinting

Tooling used for SSH Compromisation Attempts. In International Symposium on APPENDIX
Research in Attacks, Intrusions and Defenses (RAID). . L. . . .
[20] Dan Goodin. 2017. BrickerBot, the permanent denial-of-service botnet, is back List Of Mirai variants covered n thlS paper
with a vengeance. Ars Technica (2017). s . . . s s . . s
[21] Harm Griffioen and Christian Doerr. 2020. Quantifying Autonomous System IP MIORT, " MIRAT’,"OWART',"OOMGA’,"'MATOS’, 'PUTIN’,"’AKUMA,
Churn using Attack Traffic of Botnets. In International Conference on Availability, 'NGRLS’, ’dWiCkengd’, "EXTENDO’,” MMIKKTI’,”"MASUTA’, ’RipPEEP ’,
Reliability and Security (ARES). ’JOSHQ’, ’sunless’, "TSUYOI’,’RBGLZ’, ’chmod’,”ASUNA’, "OBJPRN’
[22] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. 2008. Botminer: ,J) ’u S o ’ e D, J)
Clustering analysis of network traffic for protocol-and structure-independent XWIFZ’, "QBOTVT’, ’satori’, daddyl?’?’t , 'FREEPEIN’, "HHHH’,
botnet detection. (2008). "MEMES’, ’MM’, "HAJIME’, variant that identifies itself with 8 Ran-
[23] Fariba Haddadi and A Nur Zincir-Heywood. 2015. Botnet detection system . 5 5 > s > s s
analysis on the effect of botnet evolution and feature representation. In Proceed- ’dOI’HIZG,:d’ Char’ac’ters ’, YVICKE:D’ > KAT?INA 'kkuuaassaa’, "AKIRU’,
ings of the Companion Publication of the 2015 Annual Conference on Genetic and SORA’, ’Cult’, "Zeus’, "Word’, 'REKAI

Evolutionary Computation. 893-900.
[24] Hwanjo Heo and Seungwon Shin. 2018. Who is knocking on the telnet port: A
large-scale empirical study of network scanning. In Proceedings of the 2018 on
Asia Conference on Computer and Communications Security. 625-636.
[25] Stephen Herwig, Katura Harvey, George Hughey, Richard Roberts, and Dave
Levin. 2019. Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet. In
NDSS.
Georgios Kambourakis, Constantinos Kolias, and Angelos Stavrou. 2017. The mi-
rai botnet and the iot zombie armies. In IEEE Military Communications Conference
(MILCOM).
[27] Anestis Karasaridis, Brian Rexroad, David A Hoeflin, et al. 2007. Wide-Scale
Botnet Detection and Characterization. HotBots 7 (2007), 7-7.
William Ogilvy Kermack and A. G. McKendrick. 1927. A contribution to the
mathematical theory of epidemics. Proceedings of the Royal Society A 115, 772
(1927).

[26

[28

https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://www.ovh.com/world/news/articles/a2367.the-ddos-that-didnt-break-the-camels-vac
https://www.ovh.com/world/news/articles/a2367.the-ddos-that-didnt-break-the-camels-vac
https://www.infopoint-security.de/media/Botnet_Hajime_Radware_Analyse.pdf
https://www.infopoint-security.de/media/Botnet_Hajime_Radware_Analyse.pdf
https://github.com/jgamblin/Mirai-Source-Code/blob/3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/mirai/bot/scanner.c
https://github.com/jgamblin/Mirai-Source-Code/blob/3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/mirai/bot/scanner.c
https://github.com/jgamblin/Mirai-Source-Code/blob/3273043e1ef9c0bb41bd9fcdc5317f7b797a2a94/mirai/bot/scanner.c
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/
https://sciencesmaths.skyrock.com/323627548-very-famous-ip-s-try-2-hack-them-&-they-will-f-u.html
https://sciencesmaths.skyrock.com/323627548-very-famous-ip-s-try-2-hack-them-&-they-will-f-u.html

	Abstract
	1 Introduction
	2 The Mirai Botnet
	2.1 System Infrastructure
	2.2 Mirai Behavior

	3 Related work
	4 Dataset
	5 Attacking a Low Entropy PRNG
	6 Mirai's Battle over the IoT
	6.1 Infection characteristics
	6.2 Customization and Evolution

	7 Limitations
	8 Conclusion
	References

