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Abstract—In order to protect ICT systems against remote
attacks and exploitation, insight into which systems are targeted
is necessary as soon as possible. Given the lack of advance
information, current network-based attack detection and miti-
gation techniques, such as virus scanners or intrusion prevention
systems, are typically aimed at countering the delivery and
exploitation. This paper presents a novel approach capable of
detecting threats while they scan a local network for potential
targets and even before an intrusion attack has been made. This
allows the defender to single out scan traffic and selectively
deny access to an attacker performing reconnaissance while
maintaining the availability to other users. We implement a proof-
of-concept on commodity graphics cards, and demonstrate fast
prediction of scanner behavior on a /16 network telescope.

I. INTRODUCTION

When connecting a new host to the Internet, usually within
seconds to minutes the first scan packets arrive that probe the
machine for open ports and the presence of common services.
These network scans are usually the precursor for a subsequent
exploitation attempt or attack, either by the scanning party
itself or by other cyber criminals which have bought lists of
potentially exploitable hosts on the black market [1]. In the
following attack phase on services such as SSH, telnet, FTP,
HTTP, DNS or mail, the attacker then aims to gain control over
the machine through an insufficiently secured login, misuse the
host as a dropbox for files or the delivery of malware, act as
an amplifying mirror in DDoS attacks, or as a relay for SPAM.

The hosts and the level of sophistication by which they
are exploited depends on the setup, capabilities and intentions
of the adversary. In order to be effective, cyber defense thus
needs accurate, actionable intelligence on threats and their
capabilities, and the likely targets pursued by a particular
attacker. Such information is hard to come by. Additionally,
many of the network and communication security tools are
tailored to detect threats when they are actively trying to
exploit a system (e.g., virus scanners, IPS) or aiming to prevent
information exfiltration (e.g., diodes). In terms of the “kill
chain” model by Hutchins et al. [2] shown in figure 1, this
however means that threat detection happens at a much later
stage than desirable: First, unsuccessful detection during the
delivery and exploitation phase means that a system has been
compromised. Second, if the defender is building up the first
line of defense at these stages in the attack progression chain,
little, if any, advance warning time is available about an
immanent attack. It would thus be beneficial if intelligence
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Fig. 1. By enabling an attack detection already during the adversary’s
reconnaissance phase, the attack progression can be identified and stopped
earlier than in case of other defense methods. Alternatively, the defender
can use this knowledge and gain further intelligence during the expected
subsequent delivery and exploitation.

about an adversary and a potential attack could be collected
beforehand, that can either be used to break the attack chain
as early as possible, or to inform the processes in later stages
to maximize detection rates.

Regardless of their motivations and different capabilities,
both script kiddie and cyber criminal alike first need to probe
the network which hosts and services are active prior to
subsequent steps. With network scans being the precursor to
network-based attacks and exploitation1, an effective mining
of incoming probe packets can provide insights into which
services and hosts are targeted. In order to load-balance and
minimize the impact on remote networks, high performance
port scanners such as ZMap [3] or masscan [4] generate
the sequence of to-be scanned candidates using a pseudo-
random number generator. If the next likely random number
and targeted host can already be determined in real-time during
a scan, a defender can thus interrupt and influence the remote

1We note that an adversary has still many other attack vectors ranging from
social engineering to hardware modifications to establish a presence in the
network, which are not in scope of network-based attacks outside the defense
perimeter and need to be treated differently.



reconnaissance by the adversary.

This paper presents a novel approach to exploit the IP
selection behavior of the common scan tool ZMap to predict
the next host that will be scanned in real-time. This opens up
new mitigation strategies to the defending network:

1) to selectively drop expected probes by temporarily
adjusting the firewall and prevent the remote party
from gaining insight into which resources are avail-
able locally, and

2) to obtain further knowledge about the intentions of
the remote party by analyzing target’s hosts and ports
and preemptively react by spinning up a honeypot at
the next targeted host.

The approach is especially attractive since the scan pre-
diction and reconnaissance mitigation does not require new
equipment, but is deployable using today’s typical networking
hardware. In this paper we report an efficient implementation
on commodity graphics cards and results in a /16 network
block that demonstrate that scan targets may be predicted and
mitigated within a few minutes.

This paper is structured as follows: in section II we
describe the state of the art in network scan analysis. Section
III introduces the concept of port scanning and the target-
generating algorithm of ZMap. Section IV outlines the network
telescope used in our measurements. Section V elaborates on
the techniques for an efficient real-time prediction of scan
sequences on stream processors of commodity graphics cards.
Section VI reports results and evaluates the feasibility of this
approach for different network sizes and available resources,
Section VII outlines potential mitigation options based on these
results. Section VIII concludes our work and summarizes our
findings.

II. RELATED WORK

As discussed in the introduction, the majority of work
in network defense has focused on detection and mitigation
techniques in the later stages of the “kill chain” than the
work presented in this paper. Virus scanners typically aim at a
discovery in the delivery phase, while for example host-based
intrusion detection and prevention systems try to prevent the
actual exploitation happening. Typically these systems such as
bro, snort, deny hosts or fail2ban define specific thresholds,
which – if exceeded within a certain time frame – trigger
a predefined action. Network diodes intend to limit or at
least slow down network traffic associated with the remote
controlling of malware in the C&C phase.

Obtaining intelligence about adversaries already through
their reconnaissance phase has received almost no attention
yet in the past. Yegneswaran et al. [5] propose and introduce
one of the first setups to obtain threat intelligence by collecting
packet traces on a honey network, a collection of individual
honey pots. They demonstrate the scanning behavior exhibited
by select malware, which by software shows random or highly
structured IP exploration patterns.

Allman et al. [6] conducted a longitudinal survey for
scanners over the period of 12 years. They report a massively

increasing volume of scans in the Internet, and also find
two classes of scanners being present: (1) “heavy hitters”,
scanners that send massive amounts of packets in as little
time as possible, and (2) a group which scans hosts at a slow
continuous speed. The authors noted the difficulty in collecting
and analyzing such traces due to the constraints in memory,
as they could only process and correlate data in chunks of
24 hours each. This makes it challenging to identify adversaries
which deliberately limit the amount of packets sent and act
over longer periods of time.

A significant body of work has been done on detecting
specific types of attacks, for example brute-forcing of SSH
servers. Javed and Paxson [7] report the existence of stealthy,
low-rate attacks, where advanced adversaries coordinate from
multiple resources and minimize the amount of probing to stay
under the radar of the defender. As such brute-forcing attempts
are typically precursed by a port scan identifying the existence
of these services on select hosts in the first place, a stealthy
brute-forcing action might actually be prevented by identifying
the reconnaissance scan.

Durumeric et al. [8] are among the first to exploit specific
header fields to detect scanners. They note that ZMap (which
that group authored) may be identified by the use of 54321 as
the IP ID. They cluster scan probes based on source IP and
perform statistics which ports scanners have been targeting
historically, but neither conduct a real-time analysis to obtain
situational awareness nor dissect the scanning patterns them-
selves in further detail.

III. HIGH-SPEED PORT SCANNING

Whether or not a port is open and a service exists behind it
answering requests can be determined remotely based on the
hosts’ reaction to a probe packet. As shown in figure 2, TCP
sessions begin with a three-way handshake, where the initial
TCP SYN by the client is responded to with a SYN+ACK
by the server if it is willing to establish a connection. In
case no service exists at the requested TCP port, following
RFC793 [9] the operating system will reply to an incoming
SYN packet with a RST. Since UDP packets do not involve
an application-independent connection establishment phase, a
UDP frame to an open port may or may not be answered by
the attached application. However, a request sent to a closed
port is typically answered by an ICMP Port Unreachable reply
by the operating system unless filtered out.

While SYNs are by far the most dominant TCP scan
method2, other methods exist testing transport-layer specific
differences for closed and open ports. These methods are
sometimes applied to prevent detection by default rules in
intrusion detection systems and firewalls. Since each of these
methods involves sending a packet to the probed host, these
nuances do not matter for the detection methodology described
in this paper.

Building a high-performance port scanner is not trivial. The
naive approach of attempting a connection through the sockets

2The longitudinal survey in [10] shows that 88% of TCP scans use SYNs.
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Fig. 2. A TCP packet with a SYN set will be answered with a SYN+ACK
by a server with an open port, and a TCP packet with a RST flag in case
of a closed port. In UDP, a frame to a closed port generates an ICMP Port
Unreachable response unless filtered.

provided by the operating system is impracticably slow. This
is caused by the internal timeouts, the maximum connection
pool sizes and, if successful, the clog up of resources such as
transmission control block allocations. This is why network
probes are normally sent using specialized, dedicated port
scanner applications. While tools such as nmap are nearly two
decades old and well established, even they are not efficient
enough to scan large blocks of IPs or even the entire IPv4
space within a relatively short time.

This has recently led to the emergence of a few next gener-
ation network scanners, specifically tailored to scan the entire
Internet in a short period of time. One of the major scanners,
ZMap [3], is capable of scanning the entire IPv4 space on a
1 Gbps connection in under one hour. In order to achieve such
throughput, a variety of optimizations are required, such as: the
reduction or elimination of connection state, the injection of
packets as low as possible within the host’s operating system
and network stack, often bypassing the stock network stack
and replacing it with its own streamlined version, or even the
implementation of optimized network interface drivers. Given
this significant amount of knowledge and investment necessary
to create a high-performance scanner, scanning activity in the
Internet almost exclusively relies on these publicly available
open source tools [10]. In this paper, we focus on ZMap,
which together with Masscan [11] is the major high-throughput
scanning software.

A. Scan Target Selection

If scanning a range of IP addresses, the naive approach
of moving through the space in a monotonically increasing
sequence will lead – due to the block-based allocation of ad-
dresses to organizations – to temporary targeting of a particular
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Fig. 3. Sequence of numbers generated by 2 in the multiplicative group
modulo 11.

organizations with probes. This is undesired for two reasons:

First, as remote scans (for example for security purposes
as described in [3]) are not commissioned by the remote
party but typically only tolerated, it is good practice to keep
the resources consumed as low as possible and minimize the
chance to interfere with the normal operation of the network,
both in terms of total packets sent over the duration of a
network scan but also in terms of the maximum amount of
probes launched into a single organization’s network at any
given time. This is especially true for high-speed scanners
which can easily generate volumes exceeding a million packets
per second.

Furthermore, firewalls, log monitors and intrusion detection
systems may be monitoring data traffic and are frequently
configured to block or generate an alert if a threshold of a
certain number of “unusual” packets is exceeded. In this case,
unusual packets may mean anything from traffic originating
from unauthorized source IP addresses to packets sent to hosts
and ports that do not exist. For this reason, it is also in
the interest of a scanner foregoing detection to minimize the
amount of probes sent into a given network within a particular
time interval.

Scanners that select targets at random would hence need to
keep record of which IP addresses already have been scanned.
Nmap, for example, keeps such a list and also logs which
hosts have and have not responded to a query to account for
and retry probes potentially lost in the network. However,
saving information about the connection state comes at a
significant expenditure. ZMap avoids this and instead generates
scan candidates algorithmically using a multiplicative group of
integers modulo p.

ZMap’s source code defines a set of primes and generators
to be used for scans of different network sizes. In case of
a /0 scan, i.e., a test of the entire IPv4 space, the list of IP
addresses is obtained using the primitive root 3 and the next
prime p larger than 232, 4,294,967,311 (232+15). As shown in
figure 3 for the generator 2 in the multiplicative group modulo
11, this number-theoretic approach ensures that all IP addresses
are scanned exactly once during a scan cycle while keeping
minimal internal state.

Since the same generator would recreate the exact same



sequence of IP addresses in every scan and on every host
running the ZMap software, networks at the beginning of
the sequence would be over-proportionally targeted due to
configuration tests, trial runs and aborted scans. ZMap thus
finds a value k such that 3k is co-prime to p, which results
in a valid generator. The candidate k is derived from an AES-
encrypted word modulo p, and successively incremented by
one until a valid generator is found. Each valid k will thus
generate a unique sequence 3k·1, ... 3k·(p−1) in the IPv4 space.

IV. SCANNING THE SCANNERS

When observing incoming traffic on a host directly con-
nected to the Internet, one can differentiate between three
types of traffic: (1) user traffic sent for example in response
to previous request, (2) backscatter from attacks reflecting off
other hosts where the attacker has randomly spoofed the source
IP, and (3) probing traffic from hosts in the Internet that scan
the local network for available local machines and open ports.

While firewalls typically weed out (2) and (3), they can be
mined to provide insights into ongoing attacks and adversarial
intentions. In this paper we utilize network probes which can
be separated from backscatter at the IP layer and transport
protocol layer. TCP backscatter from a DDoS attack has the
TCP SYN+ACK flag set, while a scan packet will feature
only the SYN packet. Separating UDP packets into backscat-
ter and scan traffic requires some more advanced protocol-
based heuristics, determining for example for DNS whether
the UDP payload contains a DNS request (scan) or DNS
answer (backscatter). We have implemented protocol parsers
for the most commonly occurring applications and protocols.
In addition to protocol- or payload-based methods, additional
hints also exist to identify network probes. Stock ZMap for
example also identifies itself by inserting 54321 as the IP
identification number of its generated packets.3

Obtaining scan probes for threat mining can be achieved
in two ways: First, a port mirror on a pre-firewall router could
copy all incoming packets to a separate host for analysis. As
this can be accomplished using only a configuration change
in most enterprise routers, this allows for an easy, immediate
deployment of the methods described in this paper as no
additional network components or dedicated IP addresses are
necessary. Second, traffic traces may also be collected by
observing a block of dark IP addresses – at which thus only
backscatter and network scans would arrive.

The results in this paper are based on incoming data from
a /16 IP block, which has been used as a network telescope
for about 15 months. In the absence of any user data, the
telescope receives approximately 15 GB of backscatter and
network scans per day. From this 7 TB repository, backscatter
was excluded by above methodology and the month of April
2015 selected for analysis. 190 million scan packets were

3While it is of course feasible to change the default IP ID in the source
code – and we in fact do see several parties implementing such alternations to
their copy of the open source software –, we can still detect and identify scan
probes through other behavioral means in incoming traffic which is beyond
the scope of this paper.
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Fig. 4. Cumulative density function (CDF) of the average interarrival time
between scan probes by scanning source IP.

received over the course of this month that could be attributed
to ZMap by IP ID, 14.4% of which were UDP frames.

During the 1 month observation period, a total of 13664
unique IPv4 addresses scanned the /16 network. The amount
of packets injected by source IP varies drastically. There exist
some which only inject a handful of packets over the course of
one month, while a few hosts send thousands of packets per
hour. From the perspective of the existing network defense
portfolio, the latter ones are of less concern as their noisy
appearances will trigger existing IDSes. However, a sizable
number of scanners exists that send probes significantly spaced
apart that would not result in any action by normal network
defense systems. Raising an alarm or applying a counter-
measure on the basis of one packet received in a 5 minute
interval would be impractical. It is thus especially interesting
to find new methods that can discover such slow scanners
operating almost continuously at a very low pace, either out
of courtesy or to evade detection. In our dataset, we have
observed that some scanners reduced their impact even further
by cycling through blocks of IP addresses in a round-robin
fashion. However, this may be detected due to their interleaved
arrival and the fact that their union can be uniquely traced back
to a sequence.

Figure 4 shows a plot of the cumulative density function
(CDF) of the interarrival time of scan packets, averaged by
the scanning source IP and, in case multiple scans were
launched by one IP, also separated by runs. The figure shows
that the slowest 50% of scanners had an average interarrival
time of more than 90 seconds between probes, while the
bottom quantile of scanners were injecting packets spaced
over 6 minutes apart. The adversarial reconnaissance detection
technique presented in this paper will be particularly of use
in situations of slow (and potentially distributed) scans which
cannot efficiently be detected or prevented using the current
state of the art. We notice that the ability to predict and
react to probes within a time frame of 1-2 minutes will be
sufficient to effectively stifle 50% of the scanner population. If
not all IP addresses in one’s organizational network are used
or it is acceptable that a scanner may successfully probe a
handful a packets before being shut out, a scan prediction and
reconnaissance mitigation needs to determine the scan seed in



the order of 10 minutes to be sufficiently reactive.

V. REAL-TIME PREDICTION OF MULTIPLICATIVE GROUP
GENERATORS

Since the generator for the multiplicative group, Zp, is
chosen randomly by the scanning host as discussed in section
III, neither the starting seed nor the exact resulting sequence is
known by the targets. With the prime p and the primitive root
3 specifically chosen and hard-coded within ZMap, knowledge
of which IP addresses have been scanned in which order
is however enough to determine the starting point of the
sequence. This in turn predicts which other hosts will be
targeted. In combination with the interarrival time of the
previously observed probes – if proportional to their position
in the generated sequence – an approximation when the next
IP in the organization’s network will be scanned can also be
provided.

Consider the situation that a network is monitoring a set
of IP addresses A, ... Z for incoming probes. As shown in
figure 5, each valid k ∈ (0, 2p) will generate a different se-
quence of IP k

1 , ..., IP k
2p−1 . While the worst case computational

complexity is in theory O(264), the search for a seed becomes
practical due to a number of computational and algorithmic
optimizations discussed in this section.

A. Bounding the Search Algorithmically

Suppose scan probes have been received by a local network
first by host A, then host C, followed by host B and D.
Figure 5 displays the evaluation of three k up to a generation
depth of j and the three situations that may occur:

1) Out-of-order termination. Imagine that first IP the
sequence generated by i addresses that are observable
to the receiving network in will be A followed by D.
Since a probe had been received by A and at least
one other host before D was targeted, the evaluation
of this generator can be immediately terminated.
The likelihood of out-of-order sequence hits dras-
tically increases with the size of an organizational
network, and in result the probability that individual
seeds can be abandoned early on. Consider a scan
with probes sent to k IP addresses of which n have
been observed by the defender. The likelihood for an
IP address that has received a scan packet to be not
in sequence is n−1

n , the likelihood that a seed may be
abandoned after 2 trials is 1

n ·
n−2
n−1 , and for a mismatch

at the third observed IP 1
n ·

1
n−1 ·

n−3
n−2 . Generalizing for

a mismatch at the j’s incoming probe, the probability
of seed abandonment becomes

pa(j) =
(n+ 1− j)!

n!
· n− j

n− j + 1
,

which as shown in figure 6 already eliminates close
to 98% of all valid seeds after two received packets.
The scans of the locally observed IPs occur with
the sequence of, in the worst case, 232 IP addresses
per generating seed. This naturally poses the ques-
tion about the expected length of a sequence that
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Fig. 5. Parallel exploration to identify the generator using incoming the
sequence of probes.

needs to be evaluated before a starting value may
be abandoned. If the first IP out of n total observed
IPs appear at position j of the sequence, the length
of the sequence until the first element can be derived
as

k−n∑
j=1

n

k
· j

n−1∏
i=0

k − j − 1

k − i
,

or in the general case for position l

k−n+l−1∑
j=l

n

k
· j

l−1∏
i=l

j − i

k − i

n−l∏
i=l

k − j − 1

k − i

(
n− 1

l − 1

)
.

Figure 7 shows the average number of packets that
need to be evaluated per sequence as a function of
the received packets in the network. While naturally
no sequence may be abandoned after the first probe,
having received four packets by a scanner enables
the defender to make a decision on average after
approximately 109 evaluations, a 75% speed-up.

2) Accommodation of packet loss. While the first IP
to fall within the range of the target network that is
resulting from k = 3 is E, a probe packet has not
been received by this host. Since the scan to E could
have been lost en-route in the network, a sequence
with an IP at which no scan was observed needs to
be continued, and may only be terminated in step q
for IP 3

q = B.
As the size of the observed block increases, the
probability that multiple probes were lost and thus
not observed by the network decreases drastically.
Given a packet loss probability of p, a threshold t
can be set so that correct sequences are prematurely
and incorrectly terminated with less than probability
m: pt < m.
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of observed packets.

3) (Sub-)sequence match. A k delivering the exact
sequence of probes observed at the network’s IP
addresses may indeed be the original generator value
used by the remote party. Given a small network size,
there may however exist more than one generators
that would produce A,C,B,D. While the likelihood
of such events can be bounded by monitoring more
IPs analogue to the two cases above, our implementa-
tion continues all valid sequences and feeds them into
the mitigation chain described in section VII. While
with each additionally received packet more and more
candidate sequences can be abandoned, the parallel
evaluation of a limited set of chains ensures a timely
proactive reaction while minimizing the amount of
treatment options.

B. Efficient SIMT-Seed Search on GPUs

Given the independence of all possible k and the minimal
state that needs to be kept for the computation, this problem
lends itself naturally for concurrent evaluation using parallel
computing platforms provided by modern graphics card. In
addition to algorithmic pruning discussed above, additional

significant speed-ups may be reaped through implementation-
specific optimizations when implementing the seed search in
the single-instruction-multiple-threads (SIMT) model provided
by CUDA.

The basic idea behind the discovery of the seed and
predicting the sequence of the scan is simply exploring each
seed value to find the one that would generate the observed
sequence. While there are in principle 2p − 1 starting points,
the search for a seed may first focus on a exploration of
230 +62836735 initial values, as the primitive root and prime
are hard-coded into ZMap and approximately 25% of all k are
not co-prime. Instead of saving these co-prime values, these
can be computed before a GPU call on the CPU. Since the
memory on GPUs is limited, the amount of seeds is split
up in chunks and transfered to the GPU. With multiple GPU
cards, the computation of the chunk of seeds can be done
right before the call on the next GPU. Since this can be done
asynchronously, maximizing the available time.

While the algorithm in itself is trivial – for each candidate
seed, compute all powers from 0 to 232 modulo p, compare the
resulting value with the observed IPs, and continue or abandon
seed as a result of the comparisons –, implementing such algo-
rithm on the stream processors of consumer graphics cards and
their SIMT computation model would provide unacceptable
low throughout values, as (a) in case of branches all cores need
to evaluate all options and (b) groups of threats (in CUDA-
terms warps, or wavefronts in OpenCL-lingua) – typically 16
or 32 – execute the same instruction. As from above theoretical
analysis we know already that close to 98% of all seeds may
be abandoned after 3 iterations, this results in practice in the
majority of threats inside a warp to be idle after a minuscule
fraction to time. Thus, all cores in a warp can only start on a
new thread when all other cores are finished.

Given this unusual, yet independent, workload for graphics
cards, we thus designed a seed sieving algorithm that optimizes
the high seed-abandonment likelihood with the underlying
SIMT model. Figure 8 shows a schematic overview of the
sieving procedure. As the data transfer between CPU and
GPU is comparatively slow, the CPU feeds lists of seeds
asynchronously into a dedicated memory region on the GPU.
Whenever a thread group has terminated, it fetches the next
block of seeds from the seed region while decreasing the
counter c1 of stored elements. Instead of pursuing each starting
values for up to 2p iterations or until a sequence match or
mismatch has been found, each thread group uniformly pursues
each new seed for only l iterations. If a seed is discarded, a
particular thread is thus only idle for the at most remaining
l − 1 iterations; if a seed is still a feasible option at the end
of the exploration, the original seed si, the current value (sli)
(or si·li after i runs) as well as a map of which IPs have been
hit is serialized into a separate buffer. The number l may be
dynamically chosen and the optimal value depends, as shown
above, on the total number of observed IP addresses, the level
of acceptable packet loss, and false negative ratios.

Threads first feed off the list of available seeds, clearing
the space for the CPU to asynchronously repopulate the seed
region to eliminate slowdowns from the comparatively slow
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memory transfer. If counter c1 shows the absence of seeds,
threads pop seeds off the seed buffer and re-push the seed
after l iterations if no decision could yet be made. The
comparatively high abandonment ratio (for l below a few
hundreds of thousands of iterations) means that the two lists
stay balanced and the seed buffer is not overflown. The search
can stop if both c1 and c2 are 0, indicating that in this block
no feasible candidate exist.

The split into two phases of a fixed iteration count
obsoletes the need for any thread group coordination and
expensive mutex operations. Such actions might consist of
keeping a counter on how many threads are still active and
stop processing on high idle ratios, while at the same time
reducing thread divergence as much as possible. The above
algorithmic- and platform-specific optimizations together with
a few implementation-specific tweaks result at a problem of
in theory O(264) can be efficiently computed in practice and
effective lyused for defense purposes. In the next section, we
report performance benchmarks obtained based on commodity
cards and data from our /16 network telescope.

VI. EXPERIMENTAL EVALUATION

The basis for our evaluation platform and proof-of-concept
mitigation prototype was the nVidia GTX 680 card with 1536
cores. While not optimized for integer operations such as the
Maxwell chip featured in say the Titan X (through which the
benchmarks in this section are significantly improved), the no
longer state-of-the-art GTX 680 features a major benefit for
an academic lab: cost per unit.

Since the workload can not only be parallelized across
graphics cores but also across graphics cards themselves
with proportional speedup, a scale-up using slightly older
but more consumer cards provides a powerful computing
platform at a comparatively low expense. In this section, we
report evaluation benchmarks from a scaled-up parallelization
execution on GTX 680s worth approximately 5000 Euros at
the time of writing, buying a cluster of 51 consumer cards.
This is sufficient to achieve fast turnaround times for the scan
prediction and threat mitigation described in this paper, while
at the same time being a negligible expense by the standards
of organizations that have a large enough network footprint
and public IP range where scan prediction is necessary in the
first place. As the results scale perfectly linear, the reader may
scale-up or down the performance results presented below for
differently-sized installations.

The evaluation in this section will focus on four critical
important aspects determining the applicability of the pre-
sented approach in practice: First, as an increasing number
of packets will rule out more and more seeds, we compute the
overhead reduction in possible solutions as the scan progresses.
Second, the next subsection provides for our utilized network
telescope the scan prediction run times. Third, for the above
GPU cluster and the distribution of the bottom half of scanning
speeds in figure 4, we will analyze the expected reaction time
and mitigation speeds towards scanners. Finally, as a sizable
organization may be scanned by multiple sources at the same
time, we demonstrate in the fourth subsection that a scan
prediction for multiple scanners does not require a multiple
of the run time of the individual seed searches, but that also
here the prediction of multiple threats may again be efficiently
parallelized.

A. Candidate List

Upon the receipt of the first scan packet at an IP, all of
the 230 + 62836735 seeds could have been used to generate
the sequence that is followed by the scanner. As the second
probe comes in, half of them will be out of order and may
be abandoned per the rules described above, and so on. This
however means that while at the beginning of a scan the
relatively sparse information will result in a large number
of possible starting values and thus also many “next IPs” to
protect.

Figure 9 shows the expected number of matching sequences
from the generator as a function of received probes. The
sequence count falls extremely fast from an initial astronom-
ical number, after 11 scan packets a unique solution exists
statistically.

This means that from the perspective of the defenders, it
is actually not in their best interest to stop scans as early as
possible, as this will inflate the number of targeted hosts to
monitor. If the scanner is allowed to proceed with a limited
number to packets – 11 for the network of 65000 IPs in our
example –, an initially more reluctant mitigation will ultimately
make the detection and defense much more focused already in
the short term. We can thus conclude that receiving 9 or more
scan probes – with the search for a solution already beginning
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Fig. 9. Expected number of matching sequences as a function of received
network probes.

TABLE I. WORST-CASE RUN-TIME FOR A FULL EXPLORATION ON A
SINGLE CONSUMER GRAPHICS CARD

Model Run-Time cost / unit speed-up
GTX 680 6h 20 min 95 Euro –
GTX Titan 4h 39 min 350 Euro 25%
GTX 970 3h 38 min 500 Euro 42%

as soon as two packets come in – before responding to the
scan is actually desirable.

B. Run Time

Since algorithmically-speaking only non-matching se-
quences – either due to out-of-order subsequences or threshold-
exceeding packet loss – may be abandoned, as long as the seed
is still a valid generator to the sequence it must be kept.

This however means that unless enough packets have been
received to obtain a unique sequence as discussed above, the
average run time will actually be constant, as valid sequences
for storage may exists among any of the 230+62836735. While
exploration depth will differ per seed, long-term averaged over
all seeds this variation disappears. From a defense perspective,
this may actually be an attractive feature as the absence of
variation implies a guaranteed time to find a solution.

Table I shows a comparison of the worst-case run times for
the entire space of 230 + 62836735 seeds for three consumer
graphics cards, the four-year old GTX 680, the three-year old
GTX Titan and the one-year old GTX 970. The one-year more
modern GTX Titan with its 2880 cores slices off another 25%
of the run time of the GTX 680, the GTX 970 with its new
Maxwell architecture reduces the run time by 42%. When
running in a cluster configuration as described above, each
individual card only needs to process a single-chunk, which
means that a solution is obtained in a mere 7.4 minutes.

Although cluster size may be significantly reduced, if a
solution may arrive slower or when relying on more modern
architectures (or at equal size traded in with run time), older
generations dominate the price-per-performance ratio. This is
because those generations are being phased out and available
at a significant discount. When factoring in total cost of
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Fig. 10. Success percentage to detect scanners as a function of time.

ownership (TCO) with electricity and system administration,
the modern chip however wins.

C. Reaction Time and Mitigation Success for Scanning Speeds

Referring back to figure 4, it was shown that the bottom
50% in terms of scanning speed show an inter-arrival time of
90 seconds or more. At this threshold – we assume that faster
and more noisy scanners can be efficiently detected by for
example an IDS –, this means that within the 7.4 minutes in
the worst case 5 probes have been received. For slower scans
– say an inter-arrival time for a few minutes –, the cluster
is actually “too” fast at computing the sequence than scan
probes: while a set of possible solutions has been found and
can be handed over to the scan mitigation block, the defending
network actually has to wait for a couple of more packets to
apply the right sequence in order to minimize the number of
mitigation rules (see next section).

Figure 10 shows the percentage of stopped attacks as a
function of time into the scan, the black curve for all scanners
observed in our /16 network and the red curve for specifically
those with a slow scanning speed. As can be seen in the figure,
the method proves highly effective in stopping scanners in their
tracks, after 11.5 minutes 50% of the seed and sequences of
all slow scanners have been identified. The red curve trails
off after approximately 18 minutes, as for the approx. 10%
of scanners with an interarrival time longer than 20 minutes
not enough packets have yet been received to do an effective
search.

Although the focus for this prediction technique is to
especially find slow scanners which are currently not caught in
existing mitigation techniques, we do find that the technique is
also applicable for those sending substantially more packets.
The black curve demonstrates that within 5 minutes, more
than 50% of the entire scanner population can be eliminated;
while the worst case running time of the cluster would be 7.4
minutes, fast scanners have at this point already sent so many
packets that most threads terminate significantly earlier and
the single matching candidate can be immediately identified.



D. Parallelization of Search against Multiple Scanners

As discussed above, the use of the GPU’s parallel SIMT
structure excels when thread divergence and branching can
be minimized as much as possible. Micro-benchmarks on the
GTX 680 card showed that after an 8.6 second initial initial-
ization period with the first chunk of seeds (which is avoided
for subsequent blocks due to the asynchronous repopulation
of the seed area), an individual thread displays a worst case
run time of 560 ms, if all algorithmic optimizations discussed
above are switched off. Within a run, approximately 22 ms are
spent to compare the list of IP addresses at which probes have
been received with the currently generated sequence.

As the sequence comparison only accounts for 3.9% of the
overall worst-case exploration, another dimension of the seed
search may thus be efficiently parallelized: the identification
of multiple scanners. As an organization is most likely being
subjected to a number of adversaries scanning at the same time,
the overall cost to identify their scanning pattern is thus not
a multiple of the overall runtime, but only comes at a slight
performance penalty.

A concurrent identification of 10 adversarial patterns does
require an additional 35% run time, resulting that the sequence
can be computed on the cluster in just under 10 minutes. In an
operational setting, batches of probes from various source IPs
should thus be accumulated and processed in blocks in regular
intervals to reduce the cost per identified sequence as much as
possible.

VII. MITIGATION

With the ability to predict the next targeted IP already
during the scan, this opens up new mitigation options and
possibilities for network defense. This section exemplarily
introduces two such options.

A. Selective Firewall Adjustments

As most of an organization’s IP addresses are actually
assigned to hosts potentially continuously engaged in packet
exchanges, a feasible mitigation option against an expected
scan may not be to interrupt or interfere with the ongoing op-
eration. However, as the amount of scanners is comparatively
small – for our /16 network, approximately 13000 IP addresses
performed a network reconnaissance over the course of a
month – it is feasible to meet expected probes by selectively
adjusting the firewall for the source IP addresses detected to
be in a slow scan. This adjustment could either be targeting
the entire network block, i.e., given a detected scan the source
IP is blocked from any further interaction with the defender’s
network, or selectively – and potentially differently – for each
expected scan target.

While the former approach of complete blockage would
certainly seem the most effective mitigation option, note
that the complete absence of any reply – including publicly
available web, mail and DNS servers – would be noticed
by the scanner. If the organization was specifically targeted,
the scan could be resumed from another IP address. Given
the location and value of assets in the defender’s network, it

might thus be more promising to only selective drop probes
while admitting others. As some results are being returned, the
scanner would typically assume that the silent blocks are non-
existent, deterring activities away from more important assets.

B. Intension-Detection through Target Honeypots

As for a limited number of scanner IPs and targeted
machines, individual firewall rules are feasible to implement.
Traffic expected to arrive soon for the next IPs in line could
be diverted to a honeypot. This honeypot would present open
ports and accompanying services at those ports the scanner was
previously interested in, and allow the defender to observe the
next actions and possible intension of this actor selectively.
Such a diversion, based on source and target IP address pairs,
also ensures an impact-less operation of the proposed detection
and mitigation schemes towards normal ongoing traffic.

VIII. CONCLUSION

In this paper we introduce a new type of network defense
method and demonstrate that it is possible to detect and
mitigate remote parties, performing a scan against the local
network, using the scan tool ZMap. While an identification of
the attacker’s state would normally be a prohibitively expensive
search, we introduce a number of algorithmic optimizations
that together with an efficient implementation on commodity
graphics cards provides a solution within minutes, fast enough
to react against slow- and APT-style attackers that are not
caught using today’s rule- and threshold-based intrusion de-
tection systems.
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