
Simplifying Web Traversals
By Recognizing Behavior Patterns

Christian Doerr, Daniel von Dincklage, and Amer Diwan
Dept. of Computer Science, University of Colorado at Boulder

Boulder, CO 80309, USA
{Christian.Doerr, Daniel.vonDincklage, Amer.Diwan}@colorado.edu

ABSTRACT
Web sites must often service a wide variety of clients. Thus,
it is inevitable that a web site will allow some visitors to find
their information quickly while other visitors have to follow
many links to get to the information that they need. Worse,
as web sites evolve, they may get worse over time so that
all visitors have to follow many links to find the information
that they need.

This paper describes an extensible system that analyzes web
logs to find and exploit opportunities for improving the nav-
igation of a web site. The system is extensible in that the
inefficiencies that it finds and eliminates are not predeter-
mined; to search for a new kind of inefficiency, web site ad-
mininstrators can provide a pattern (in a language designed
specifically for this) that finds and eliminates the new inef-
ficiency.

Categories and Subject Descriptors: H.3.3 Informa-
tion Systems, Information Search and Retrieval I.5.5 Pat-
tern Recognition,Miscellaneous

General Terms: Measurement, Performance

Keywords: web usage mining, behavior pattern recogni-
tion, navigation improvement

1. INTRODUCTION
Web sites often service a wide variety of clients. For ex-
ample, students may visit the university’s web site to look
up the “Calendar of Events”; non-students may visit this
web site to get directions from the airport. Over time these
patterns may change. For example, each week students may
visit a different “week” under the “Calendar of Events” web
page to look up events for the current week. Thus, a good
web site must (i) efficiently and effectively provide informa-
tion to a wide variety of clients and (ii) change to accom-
modate the changing needs of its clients. If a web site does
not meet these requirements then at least some clients will
find it difficult to navigate.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HT’07, September 10–12, 2007, Manchester, United Kingdom.
Copyright 2007 ACM 978-1-59593-820-6/07/0009 ...$5.00.

Furthermore, as web sites evolve over time, they grow in
content but also in complexity. If the web site is large, such
as a web site for an institution, the evolution of the web site
can result in information that is buried deep inside a hier-
archy of web pages. Moreover, information may end up in
places where it does not belong. Thus, as web sites evolve,
they become increasingly difficult to navigate. For these
reasons, even well-designed web sites may be difficult for
many clients to navigate. These clients will have to follow
links back and forth until they find the information that they
need. Zhu [15] reports that “moving back and forth between
links and the main nodes creates distruption and discontinu-
ity” causing “disorientation and cognitive overload”. This
paper describes a system that automatically and dynami-
cally adapts web sites based on their usage patterns so that
they are easy for their clients to navigate.

We show that tracking and recognizing patterns in web logs
can identify and fix navigational problems in web sites. More
specifically, we identify opportunities for (i) automatically
redirecting visitors (all or a subset) from a web page to an-
other web page (redirect) and (ii) providing visitors (all or
a subset) with a quicklink that enables them to get to their
target without visiting all intermediate pages (quicklink).

While prior work has tracked and analyzed user traversals
of web sites in order to address navigational problems, these
approaches focused only on a single web site at a time: the
user analyzes and improves each web site individually. This
paper argues that different web sites often exhibit similar
problems. Moreover, these problems and their solutions can
be expressed naturally as high-level rules that are widely
applicable to diverse web sites.

We describe and evaluate a system, flexiweb, that applies
such high-level rules to perform the redirect and quicklink
optimizations described above. These rules may be cus-
tomized to a particular web site or may be general and thus
applicable to any web site. The notation for rewrite rules
is designed to be easy to use; yet it is expressive enough for
many optimizations. We demonstrate our system by apply-
ing it to a number of different optimizations.

The contribution of our paper is two-fold: First, we intro-
duce the concept of web site-independent navigational prob-
lems. Second, we propose a new query language that can be
used to universally describe common user behavior patterns

on web sites. Patterns and navigational remedies expressed
using this language are independent of one particular im-
plementation and can be shared and applied across various
sites thus making navigational remedies more portable.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 shows examples that show
the existence of implementation-independent behavior pat-
terns. Section 4 describes the system on a high level. Section
5 describes the language and Section 6 shows how to use our
notation to express the patterns along with their optimiza-
tions presented in Section 3. Section 7 evaluates our work
by proving the need for patterns, describing the expressive-
ness of the language, verifying that users adopt quicklinks
and measuring the performance of flexiweb. Section 8 con-
cludes and outlines future work.

2. RELATED WORK
Prior work falls into four categories: visualizing log files, al-
gorithmic approaches for analyzing behavior, navigational
assistants, and adaptive hypermedia. The former two cate-
gories relate to deriving and tracking of usage patterns, the
latter two categories mainly address navigational problems.

2.1 Visualizing log files
This area combines a web site’s structure (i.e. the individ-
ual pages and the links between them) with traversals of this
site. This combined information gives webmasters a better
understanding of how visitors use a site and how the site
might be improved. These approaches typically use hyper-
bolic trees and discs in their visualization.

Examples of visualization using hyperbolic trees are Mun-
zner’s Site Manager [6] and Wexelblat and Maes’ footprint
system [13]. Since hyperbolic trees show every connection
within the web graph, they are most useful for relatively
small web sites. Large web sites are typically visualized
using discs which display the graphs as a directed acyclic
graph. This reduces complexity but also the accuracy of
the display. Further, visualization is always connected to
aggregation during which important information about sin-
gle paths that users have taken is lost. Therefore, it can
be hard to develop a detailed understanding about behavior
patterns and identify improvements to navigational struc-
ture on a purely graphical representation.

While our approach is not directly concerned with visualiza-
tion of web graphs, we can use similar analysis capabilities
as a pre-processing tool to zoom in on specific parts of inter-
est in a complete web log, thus reducing the complexity of
the graph to be visualized. flexiweb can then supply this
pre-analyzed behavior data in many output formats that are
suitable for visualization with the tools mentioned about.

2.2 Algorithmic Approaches
To overcome problems with aggregated data, algorithmic
approaches to log analysis have been developed. These sys-
tems analyze the behavior of a single user at a time to find
patterns that can explain their navigational behavior.

Tools such as the one proposed by Chen et al. [2] analyze
web logs for association rules and identify which pages are
related to each other, i.e., given that a user visits a certain

page which other pages is she likely to visit as well. Other
algorithmic approaches search for navigational clusters [14,
8] to identify navigational behavior patterns that are unique
to specific user groups. Pei et al. [7] and Perkowitz and Et-
zioni [8] further detect sequential patterns which identify
paths that are repeatedly traversed on a web site.

Other researchers have created web log mining techniques
and tools, such as WUM [11] and Webminer [5] that facili-
tate the data mining process to find potential navigational
improvements. Using these tools, a web master can use
SQL-like query languages to investigate for example how
many users a traversing a link between two specific pages
and count other events that occurred in the logs.

Our approach can express all the algorithms of the related
work described above and provides further extensibility thr-
ough its pattern language. In comparison to tools such as
WUM our approach finds patterns on a more abstract level.
For example, instead of manually searching for patterns by
looking at the pages that users visit after visiting a partic-
ular page, X, in flexiweb you can describe the pattern on
an abstract level and the system will find all concrete pages
to which the pattern applies.

2.3 Navigational Assistants
Navigational assistants operate on the client-side to detect
and instantiate navigational improvements. In this line of
research, a stand-alone application monitors or is explicitly
told the user’s preferences and interests and as a result sug-
gests or predicts future pages to visit and may even modify
the design of the web page to help the user better identify
the links of interest.

Following this approach, Lieberman’s Letizia [4] tries to rec-
ommend pages the user could be interested in based on the
previous search history and automatically searches the web-
site for similar items. Similarly, Davidson [3] predicts future
user behavior based on a content analysis of the HTML con-
tent, and uses this knowledge for prefetching content.

Tsandilas and Schraefel [12] developed an “adaptation con-
troller” with which users can directly select topics of inter-
ests. The stand-alone application then modifies link colors
and font sizes to highlight links of high importance based on
the users settings in the adaptation controller.

The major difference between these systems and our ap-
proach is that navigational assistants require a tool to be
installed at the client side which is infeasible in our setting
as we don’t have control over all clients accessing out web
sites. Further, these approaches only consider local behav-
ior and therefore are blind to global trends on a certain web
site, for example highlighting items that are currently of in-
terest to many people.

2.4 Adaptive Hypermedia
Adaptive hypermedia uses server-side tools that adapt the
content of pages depending on the user visiting that page.
De Bra et al.’s Tool AHA! [1, 9], for example, allows dynamic
rewriting of a web site, based on a user model that encodes
previous user actions and history of that particular user with

the site. This work also adapts navigation for individuals
or classes of users, but does not automatically detect user
behavior patterns or allow for a cross-site use of patterns.

3. PATTERNS
The original motivation for our system came about because
we manually discovered a number of optimization opportu-
nities in web sites that we were involved in. In this Section,
we now discuss four of such optimizations as examples for
patterns that can occur across multiple sites. Each discus-
sion includes an ad-hoc formalization of the behavior to be
matched. The full formalization is discussed in Section 6.
These are four of the many possible optimizations that our
system can perform (see Section 5).

We describe these optimizations in terms of operations on
web graphs. A web graph represents a complete or partial
web site. Nodes in the web graph represent pages. Edges
represent links between the pages.1 We build these web
graphs by processing web logs. The thickness of the edges
in a web graph indicates the frequency with which users tra-
verse the corresponding link. The time attribute of a node
gives the average time spent in that node before a user fol-
low links to other nodes. If users do not leave a node, that
node does not have a time attribute.

Our optimizations transform web graphs in two ways: (i)
by adding links that enable users to get to the information
of interest quickly (thus these are called “quicklinks”). We
represent “quicklinks” as dashed edges in the web graph;
and (ii) by adding transitions that automatically move vis-
itors to one web page to another web page (we call these
“redirects”).

3.1 Skipping irrelevant nodes
Scenario. Imagine a professor’s “My Teaching” web site
which links to the home pages of all the classes that the pro-
fessor is teaching. Further assume that the professor teaches
only a single class per semester. While the web page is a
useful way for the professor to organize her classes, it is just
an extra web page that students need to visit on their way to
a class web page. More specifically, most students who visit
the “My Teaching” site are only interested in the course that
the professor is currently teaching. We can improve the user
experience with this web site by automatically redirecting
visitors to the course page for the current semester. More
specifically, we can automatically redirect any visitors to the
“My Teaching” page to the current semester’s course page.
To support visitors that are interested in classes from other
semesters, this optimization also provides a back link so that
the visitors can get to the “My Teaching” page without be-
ing redirected. Note that our redirect does not apply if the
page whose accesses are being redirected is accessed from
the target of the redirect. This prevents endless loops.

Generalization. Large web sites often have “gateway pages”
(e.g., the “My Teaching” page). These pages may announce
information or contain links that most users are not inter-
ested in. These pages can benefit from the “skipping irrele-
vant nodes” optimization described here.

1We use nodes/pages as well as edges/links interchangeably.

A

C

B

D

F

E

G

time(E) = 5 s

time(B) = 30 s

time(F) = 10 s

time(A) = 60 s

time(D) = 50 s

time(C) = 90 s

Figure 1: Irrelevant node: All users leave node E
always towards node G with little average time spent
within E - this node is likely to be irrelevant

Optimization. We can identify opportunities for this op-
timization by identifying pages that (i) most users leave to-
wards a single other page; and (ii) most users spend little
time on. Figure 1 models such a situation. Users spend
little time on Node E and moreover all the visitors of Node
E leave it for node G. Thus, we can automatically redirect
visitors from of E to node G, saving users the additional step
of having to visit node E and click on a link.

Node B satisfies condition (i) for the optimization but not
condition (ii). While Node B has a single outgoing edge,
users spend a significant amount of time in the node. Thus,
Node B must contain useful information and thus we should
not redirect visitors to Node B to Node C.

Node F satisfies condition (ii) for the optimization but not
condition (i). More specifically, even though users spend lit-
tle time at Node F, it still provides an important decision
point to the user: they may leave F in equal proportions to
go to Node B or to Node E. If we automatically redirected
Node F to Node E (or Node B) we would be wrong half the
time. Thus, we do not apply this optimization to Node F.

The following pattern describes the criteria for identifying
nodes to which we can apply the “skipping irrelevant nodes”
optimization. More specifically we search through all paths
taken by users through the web site and identify nodes i in
which users spend less time than ttime and leave i for the
next node in the path at least tfreq percent of the time:

exists p : Path in
exists i : 0 <= i < (p.size - 1) in

(avg. time spent in ith node) < ttime

&& (fraction of visits to ith node of p
when visitors leave for the i+1th node in p) > tfreq

We redirect all visitors of p[i] to p[i + 1]. The above pattern
iterates over all paths to make sure that the optimization
only considers edges that users actually traverse. Once it
has an edge, the pattern incorporates global information
(e.g., average time spent in in a node) to determine if the
edge is worth optimizing from a global perspective.

Note that our system communicates optimizations if applied
and their effects to the user, so users know when a page is
skipped and can backtrack to the skipped page. We can
use techniques such as exponential weighting to penalize in-
correct redirects (i.e., when users traverse the backtracking
link). If a redirect accumulates enough penalty we can dis-
able this optimization. In this way our system addresses
the criticism that users do not have control over adaptive
hypermedia systems [10].

3.2 Skipping irrelevant nodes
on a per-user basis

Scenario. Imagine that our professor now teaches two
courses per semester: a graduate course and an undergrad-
uate course. Now, visitors to the “My Teaching” page may
go to either the graduate course page or the undergraduate
course page; we cannot redirect all visitors to the same page
anymore. Most students will take either the graduate or the
undergraduate course. If we track the history of individual
students then we may still be able to redirect them to the
relevant page. Of course, we cannot redirect students that
are taking both courses (e.g., sitting in the undergraduate
course as a remedial measure).

Generalization. Even though we cannot apply the “skip-
ping irrelevant nodes” optimization globally, we can still ap-
ply it if we track information and apply the optimizations
on a per user basis. This optimization will be particularly
effective for web sites that require users to log in (and thus
our system knows the identity of the user). If a web site
does not require users to log in, we use standard heuristics
(e.g. IP addresses and user agents) to make a best-effort
attempt at user identification.

Optimization. We can identify opportunities for this opti-
mization using the same criteria as the optimization in Sec-
tion 3.1 except that we consider one user at a time rather
than all users. The following pattern describes the criteria
for triggering this optimization:

exists u:User in
exists p:Path < User=u > in

exists i:0 <= i < (p.size - 1) in

(avg. time u spends in ith node) < ttime&&

(fraction of u’s visits to ith node of p when
u leaves it for the i+1th node in p) > tfreq

3.3 Providing shortcuts to popular targets
Scenario. Imagine now that as the semester progresses,
the professor adds information to the current course web
sites. Rather than adding all the information at the top
level, she organizes the site hierarchically so that users are
not confronted by a huge number of links on any page. Un-
fortunately, as a consequence, students now have to traverse

A

B C

D

E

Q

R

S

...

1. a small amount of traffic
always follows the same path

2. mostly ending
at a certain node

3. as information might be
misplaced, quicklinks on

that path allow more direct
access of the information

Figure 2: Similar Behavior: Many users that arrive
at node B from node A will continue to node E

many links to get to this week’s assignment: they have to go
from the class’ main page, to the weekly schedule, and finally
to the current assignment. In the week before an assignment
is due, many students will follow the above sequence of links
to find the assignment. The “Providing shortcuts to popular
targets” optimization automatically provides a quicklink to
the current assignment from the class’s main page so that
students can get to the current assignment in fewer links.

Generalization. Web site designers often organize infor-
mation in deep hierarchies so that no single web page is
overly complex. However this means that users need to click
on many links before they can get to the information that
they need. Some pages may be interesting to many users.
The “Providing shortcuts to popular targets” optimization
targets these pages.

Optimization. We can identify opportunities for this opti-
mization by identifying pages that (i) many users visit and
do not follow any links out of that page (i.e., it is the page
they were looking for); and (ii) there is a path (or more than
one path) that users frequently traverse in order to get to
the page. Thus, we can put quicklinks from all nodes in
the path to the page of interest. Figure 2 models such a
situation. Once users get to Node E they stay there and
many users follow the path B →C→D→E to get to Node E.
Thus we insert quicklinks (shown with dotted arrows) from
nodes B and C to Node E. Note that it is not necessary that
all users follow the same path (as symbolized by the other
edges leaving nodes B, C and D), it just has to be a share
large enough to be worth optimizing for.

The path to Node E starting at Node A does not satisfy
condition (ii) because more users leave Node A for Nodes
Q and R than they do for Node B. Thus, a quicklink from
Node A to Node E will be wasteful for most visitors to A.
Path B→C→D satisfies condition (ii) for the optimization
but Node D does not satisfy condition (i). Thus, we do not
add quicklinks from Nodes B to Node D. We now develop the
pattern for this optimization more formally in three steps.
The first step finds paths that contain a node (at position k)
where a significant percentage of traversals stop. This step
identifies pages that satisfy condition (i) above.

exists p:Path in
exists k:0 <= k < p.size in

(percentage of traversals that stop at
kth page in p) > tstop

The second step finds a node (at position j) in the path
such that the path from this node to the kth node (as found
earlier) is commonly traversed; i.e., each edge is relatively
frequently traversed.

exists j:0 <= j < k in
forall q:j <= q <= k in

(fraction of traversals that leave qth node

for (q+1)th node) > tfreq

Since we want a significant percentage of users to traverse
this path, we have a problem if we stop with above. For
example, if tfreq is 70% then after traversing five links we
may have as few as 17% of the users left (0.75). The third
step ensures that a significant fraction of users that enter
the jth node of p actually get to the kth node. Collectively,
the second and third step enforce condition (ii) above.

(fraction of users entering jthnode of p that get
to kth node of p) > rmin

Given a path and a node that satisfies the above pattern, we
can now insert quicklinks. To prevent pages from ending up
with too many quicklinks we decay the quicklinks over time:
if few users use a quicklink then it eventually disappears.

3.4 Reacting to temporal phenomena
Scenario. In the example in Section 3.3 we added quick
links to assignment pages. However, Section 3.3 ignored the
temporal aspect of assignments: i.e., each week the assign-
ment that students will want to go to changes. Thus, rather
than analyzing all the paths to find opportunities for quick-
links, we should instead focus on the most recent behavior
and expire quicklinks as soon as the corresponding assign-
ment ceases to be popular.

Generalization. This optimization is identical to “Provid-
ing shortcuts to popular targets” except that it considers
only recent behavior.

Optimization. We can identify opportunities for this opti-
mization identically to “Providing shortcuts to popular tar-
gets” except that we will look only at the most recent paths.
This optimization looks identical to “Providing shortcuts to
popular targets”, except that the first step is:

exists p:Path < Time=last2weeks > in
exists k:0 <= k < p.size in

(percentage of traversals
that stop at kth page in p) > tleave

4. IMPLEMENTATION
We now describe the overall implementation of our system.
Section 5 describes our notation for specifying optimiza-
tions. flexiweb has three components: log analyzer, page
optimizer, and page generator (Figure 3).

Users browse Web
Sites, Usage is recorded

in Web Access Logs

Web Site Designers, Administrators etc. identify
Patterns for Optimization and develop Simplification Rules

WWW

Document describing
set of Patterns along
with Optimizations

Patterns can be shared
across communities

Optimizer

Web Logs

Pattern
Description

Web Site improved through
concrete application of
Optimization Patterns

Rewrite Rules
for Web Server

Users experience
improved browsing

Automatic
Application

User Involvement
to Decide on
Optimizations

Figure 3: Process for optimizing a web site

The log analyzer periodically samples the log files of a web
site to extract information about web page accesses. The
log analyzer then groups web page accesses into paths. Each
path is a sequence of pages visited by a specific user. The
log analyzer uses standard heuristics (e.g. hostnames, login
information, access times) to make a best-effort attempt at
grouping page accesses into paths. The page optimizer uses
the output of the log analyzer to determine which optimiza-
tions to perform. Finally, the page generator, which plugs
into a web server (Apache in our implementation) applies
the optimizations to the web pages before returning them
to a client. Figure 3 illustrates this pictorially.

There are three steps to using our system.
First, the web site designers and administrators need to de-
cide which patterns to use in order to improve the browsing
experience of their web site’s visitors. They may write their
own patterns or obtain them from elsewhere. Since patterns
model general problems rather than concrete situations they
are easily shared.

Second, flexiweb uses these patterns to automatically rewrite
web pages in response to user requests. Since our system
works exclusively on the server side, clients do not need to
do anything special to benefit from the optimizations. De-
spite flexiweb’s fast processing speed, this step would take
too long to be evaluated at run time. Therefore, we suggest
that the process of matching the patterns with the current
set of log files should be done periodically and also does not
necessarily need to be performed by the system running the
web server itself.

Third, flexiweb applies rewrite rules while visitors are brow-
sing the web site. In order to seamlessly fit in with the web
site’s design, web designers need to mark, using standard
HTML tags, where flexiweb should place its links.

5. PATTERN LANGUAGE
As demonstrated in Section 3, flexiweb uses a pattern lan-
guage to express its optimizations. Administrators can ap-
ply these optimizations to simplify their web site. How-
ever, our system is not limited to the application of a few
pre-defined optimizations. Instead, administrators can in-
troduce new optimizations as they recognize new opportu-
nities. To introduce a new optimization, an administrator
first expresses it in our pattern language and adds it to the
set of optimizations that flexiweb should apply. We now
show how to formalize the patterns shown in Section 3.

Each optimization pattern of flexiweb has two parts: match
and rewrite. Section 5.1 describes the match part and Sec-
tion 5.2 describes the rewrite part.

5.1 Match Block
A match specification describes the situations in which the
optimization applies. Each match specification in flexiweb

contains a single expression. When applying an optimiza-
tion, flexiweb evaluates this expression and, possibly, its
subexpressions. The value(s) returned from the overall ex-
pression is the result of the match.

5.1.1 Datatypes and Operators
flexiweb supports multiple datatypes. Apart from stan-
dard types such as integers and strings, our set of datatypes
includes User, Page, PageVisit, Edge, and Path. We also
support sets and lists of these types. A User is a unique
visitor to our website. A user can visit a Page. Each page
has a URL. A PageVisit represents a visit to a page by a
user and thus each PageVisit has a Page, a User, and a time.
An Edge links two PageVisits and represents a single edge
traversal by a User. A Path is a sequence of PageVisits rep-
resenting a traversal from when user arrives at a website to
when the user stops traversing (i.e., the user stays at the last
Page). Sometimes when convenient, we will think of a Path
as a sequence of Edges rather than a sequence of PageVisits.

flexiweb supports a number of simple operators for com-
puting with the above datatypes. These operators include
standard arithmetic operators such as +, , and /, string
concatenation, and set operations (unions and intersection).
Each datatype supports appropriate operators that return
information about its properties. For example, p.length re-
turns the length of a path p. p[i] returns the ith element
of path p. Other operators on our data types include the
combination of two pages to an edge (makeEdge(. . .)), the
construction of a path from a single edge (makePath(. . .)),
and the concatenation of two paths (appendPaths(. . .)).

5.1.2 Function definition
To encapsulate and reuse patterns, the language also allows
the definition of parameterized functions. These functions
can call each other to create recursion for example, and pro-
vide return values that can be used by the calling entity.

5.1.3 Iteration
The language described so far cannot describe properties
that must hold over multiple pieces of data (e.g., over all
paths). To remedy this, flexiweb contains the constructs
forall and exists that take a set of elements. Both constructs
return two values: First, a boolean value and a subset of the
set supplied as argument.

forall 〈 var 〉 : 〈 Set 〉 in 〈 body 〉
exists 〈 var 〉 : 〈 Set 〉 in 〈 body 〉

forall evaluates Set and binds each value in the Set to var.
For each such binding, forall evaluates body. If all of these
evaluations evaluate to true, then the entire forall evaluates
to true. If, however, even one evaluation of body evaluates
to false, the entire forall evaluates to false. If the forall re-
turns true, the second value returned are all values of 〈 var 〉.
Otherwise the empty set is returned.

For example consider this pattern:
forall p : Path in p.length > 10

If all Paths have length greater than 10, the above pattern
returns true, otherwise it returns false. If the pattern re-
turns true, it will also return all values that p had while
evaluating the body, i.e., all paths of length 11 or longer.

exists is different from forall in that it evaluates to true if
any of the evaluations of body evaluates to true. Otherwise
it evaluates to false. If exists returns true, it also returns
those values of 〈Set〉 that caused the exists body to evaluate
to true. If the exists returns false, it also returns the empty
set. If multiple exists and forall invocations are nested, the
outer construct returns the combination of the values of its
variable and the values of the variables of the nested con-
struct that correspond to the respective outer value.

For example consider this pattern:
exists p : Path in p.length > 10

This pattern evaluates to true if any of the paths have a
length greater than 10. If the pattern returns true, it will
also return a set of those values for which the body was true,
i.e., the set of all paths that have a length greater than 10.

5.1.4 Global Predicates
Although the pattern language we have described so far is
quite expressive, it is cumbersome to express global proper-
ties (such as the average time spent in a web page). Thus,
flexiweb includes operations that compute global proper-
ties. Examples for global predicates of in flexiweb are:

avgtime(pg) returns the average time, in milliseconds, spent
in Page pg by users that visited pg.

outratio(pg1 → pg2) returns the ratio of the number of
users that left Page pg1 via an edge to page pg2 to
the number of users that left node pg1 by any edge.
outratio does not count users that do not leave pg1.

incoming(pg) returns the total number of users that visit
page pg by an incoming edge.

outgoing(pg) returns the total number of users leaving pg
by the outgoing edge.

5.1.5 Data constraints
We often need to restrict the data on which our patterns
operate. For example, we may be interested only in paths
from the last two weeks; Paths on the other hand gives us
all paths in the logs. To support such restrictions, pattern
writers can place < 〈Expr〉 > after the predicates or set
variables that need to be restricted. The Expr specifies the
restriction. For example:

User=user Restrict to a specific user.
Time=time Restrict to a particular time interval.

5.2 Rewrite Block
As discussed in Section 5.1, a match block evaluates to true
if it finds opportunities for optimizations. In addition, a
match block returns bindings for the exists and forall vari-
ables that make the match block evaluate to true. flexiweb
invokes the rewrite block for each returned binding. The
rewrite block can access these bindings. Given this informa-
tion, the rewrite block actually performs the optimizations.
Our current prototype of flexiweb optimizes the web graph
using redirects and quicklinks.

redirect(a → b) causes a redirect from page a to page b.
More specifically, every time a user reaches a, the web server
redirects the user to b. redirect adds an appropriate mes-
sage and link to b (when users reach it via the redirect) so
that users can backtrack if they did not want to be redi-
rected.

quicklink(a → b) inserts a quicklink into page a that leads
to page b. quicklink takes optional attributes, such as a
link description that can be set through an attribute title.
Quicklinks are displayed by default as a hovering element
that does not disturb the layout of the web site. The web
designer can specify alternative placements. These quick-
links describe shortcuts to pages of interest depending on
the current user’s position and/or previous navigation path.

6. EXAMPLES
After having presented the core features of our language,
we now show how to express the optimizations in Section 3
using our pattern notation was presented in Section 5.

6.1 Irrelevant intermediate nodes
The following pattern implements the optimization in Sec-
tion 3.1. The match block finds all p and i such that users
(i) on average spend little time (i.e., less than ttime) on the
ith page visited on the path and (ii) on average, when users
visit the ith page in p they usually go on to the i + 1th page
in p. Note the “.page”, which extracts the Page from the
PageVisit (recall that a Path is a sequence of PageVisits).
The rewrite part of the pattern inserts a redirect between
the two pages identified in the inner exists.

match {
exists p:Path in exists i:0<=i<(p.size - 1) in

avgtime(p[i].page) < ttime&&
outratio(p[i] → p[i+1]) > tfreq }

rewrite { redirect(p[i] → p[i+1])}

6.2 Skipping irrelevant nodes on a per user
basis

This pattern differs from the previous one in that it per-
forms the optimization on a per-user basis. Note how the
pattern uses <User=u> to restrict Path, avgtime, outratio,
and redirect to a particular user.

match {
exists u:User in

exists p:Path<User=u> in
exists i:0<=i<(p.size - 1) in
avgtime<User =u>(p[i].page) < ttime

&& outratio< User =u>(p[i] → p[i+1]) > tfreq}
rewrite {

redirect< User =u>(p[i] → p[i+1])
}

6.3 Providing shortcuts to popular targets
match {
exists p:Path in

exists k:0<=k<p.size in
(outgoing(p[k].page / incoming(p[k].page)) < tleaving

&& exists j:0<=j<k in
forall q:j<=q<=k in

outratio(p[q].page → p[q+1].page) > tfreq &&
(incoming(p[k].page) / incoming(p[j].page)) > tmin

}
rewrite {

forall r:j<=r<k in
quicklink(p[r].page → p[k].page, title=p[k].page.title)

}

This pattern implements the optimization in Section 3.3.
(outgoing(p[k].page)/incoming(p[k].page)) < tleaving eval-
uates to true if a significant fraction of visitors to p[k].page
actually stay at this page (i.e., they do not leave). outratio(
p[q].page → p[q + 1].page) > tfreq checks that the edges on
the subpath from p[j].page to p[k].page are frequently tra-
versed. Finally, incoming(p[k].page)/incoming(p[j].page) >
tmin guarantees that a significant number of the users that
enter p[j].page actually reach p[k].page. The rewriting then
inserts quicklinks along the paths identified by the match.

6.4 Reacting to temporal phenomena
The pattern in Figure 4 implements the optimization in Sec-
tion 3.4. This pattern is identical to the pattern in Section
6.3 except that it restricts the pattern to only look at the
last two weeks of data.

7. EVALUATION
We evaluate our system using four criteria. First, we show
that the idea of web site-independant patterns can be use-
ful. We do this by demonstrating that the patterns have
a wide applicability and can be found across different web
sites. Second, we demonstrate that our proposed language
is expressive enough to model a wide variety of useful pat-
terns. Third, we evaluate the effectiveness of our approach
by showing that users adopt quicklinks introduced by our
system into their usage behavior. Fourth, we evaluate the
resource requirements of our system and show that it is fast
enough to be deployed.

match {
exists p:Path<Time=last2weeks> in
exists k:0<=k<p.size in

(outgoing<Time=last2weeks>(p[k].page / incoming<Time=last2weeks>(p[k].page)) < tleaving &&
exists j:0<=j<k in

forall q:j<=q<=k in
outratio<Time=last2weeks>(p[q].page → p[q+1].page) > tfreq &&
(incoming<Time=last2weeks>(p[k].page) / incoming<Time=last2weeks>(p[j].page)) > tmin }

rewrite {forall r:j<=r<k in
quicklink(p[r].page → p[k].page, title=p[k].page.title) }

Figure 4: The pattern for the temporal phenomena

0 20 40 60 80 100
percentage leaving that page towards a single destination

0

10s

20s

30s

40s

50s

tim
e

sp
en

t o
n

pa
ge

Figure 5: Relationship between time spent on a page
and percentage of visitors leaving that page towards
a single destination

For this evaluation, we analyzed the visitor behaviors on two
departmental web servers over a period of 10 months. These
two servers hosted both the official department web pages
and 47 personal web sites. Over the course of the evaluation,
these servers received more than 65 million page hits.

7.1 Usefulness of Patterns
In this subsection, we show that dynamic patterns are ap-
plicable and necessary. We do this by (i) showing that log
files have properties that can be detected by patterns; and
(ii) that user behavior is not predictable. Property (i) im-
plies that we can apply patterns to web sites, property (ii)
implies the need for an automatic application of patterns.

Page content and surfing behavior are related. The
core idea of the patterns proposed in Section 3.1 and 3.2
was that some pages may be “gateway” pages with only lit-
tle information or that ask visitors to make a selection that
is obvious to most of them. To show that structure exists
that can be detected by our patters, we examine two fac-
tors: (i) The usefulness of a page, as measured by the time
visitors spent looking at it, and (ii) the ratio of visitors that
leave a page towards a given second page. Both properties
are easily measured by our patterns.

Figure 5 shows the relationship between the time spent on
a given page and where users go from that page. The plot-

ted data is based on an analysis of more than 31000 paths
on 48 web sites represented as dots in the graph that were
taken by at least 5 users each, and a clear relationship seems
to exists between the overall time and the continuing surf
behavior of the visitors. The less time a visitor spends on
any given page, the more likely the user is to leave that par-
ticular page towards a single other page. Thus “gateway”
pages as targeted by the patterns exist and can be identified.

Time-variant behavior is not predictable. We now
show that user behavior changes unpredictably over time.
This generates a need for frequent adaptation of quicklinks.
Consider the 8-month timeline of visitors accessing three se-
lected web pages on the department’s web site in Figure 6.
Accesses to the pages “Spring 2007 classes”, “Grad Program
Admission” and “Fall 2006 classes” vary over time and due
to external events. The week before each semester starts,
visitors become highly interested in the course listing for
the current semester, but the week after the begin of the
semester, this flow of visitors ceases rapidly.

A similar temporal pattern exists for the visitors’ interest in
the admission to the graduate program. Starting in Octo-
ber, the stream of visitors builds up until it highly decreases
after the application deadline in the first week of December.
For all three web pages, there exists a changing demand over
time and during such peak periods one might decide to make
the link to that page more visible or place more prominently.

Using the data from Figure 6, we also see that manually
“hardcoding” times when quicklinks should be appear on the
web site is not feasible: even though registration began on
October 17th, we did not see any change in user’s behavior
until three weeks later. In another instance we observed, a
research paper was featured on a government web site and in
a news report. Within hours that paper became the second
most accessed resource on the entire web server. Due to this
unpredictability only a system observing user behavior will
be able to make the right changes in a timely and relevant
manner. This is the core idea of the patterns proposed in
Section 3.3 and 3.4.

7.2 Expressiveness of Language
A pattern language for our application needs to be extensible
and expressive enough to model any kind of behavioral pat-
tern and associated optimization. In Section 5 we discussed
only the core features of our proposed language, which was
designed in a modular fashion. Developers can extend its
features very easily using a dedicated API. The extensions
can be written in Java.

9. Aug 2006 28. Sep 2006 17. Nov 2006 6. Jan 2007 25. Feb 2007
0

20

40

60

80

100

120

Nu
m

be
r o

f H
its

Spring 2007 classes
Grad Program Admission
Fall 2006 classes

Begin of Fall 2006 Classes

Add / Drop Deadline
Begin of Registration Spring 2007

MS/PhD Application Deadline

Last Day of Classes

Begin of Spring 2007 Classes

Add/Drop Deadline

Figure 6: Development of user hits on three selected web pages over time

It is further possible using the semantics of our language to
show that it is Turing complete. This guarantees that any
possible computation can be modeled with our language.
However, we omit this proof due to space constraints in this
paper. This can be intuitively understood by using a map-
ping that translates the infinite tape into a path using recur-
sive functions for the loop and forall statements to introduce
conditionals.

7.3 Effectiveness of our System
This part of our evaluation addresses the question whether
web users experience the introduced quicklinks as a benefit
and use them. On the sixth month of our observation, we
installed flexiweb onto the departmental web site. Every
night, the system would analyze the log data of the past
days, weight it according to a negative exponential function
to account for a trade off between fast responsiveness and
hysteresis and identify possible quicklinks to the most pop-
ular pages on the web server. To measure the usefulness of
the introduced quicklinks, we monitored how user naviga-
tion and behavior patterns changed subsequent to placing
quicklinks on the web site.

Figure 7 shows the percentage of visitors that use the in-
troduced quicklinks instead of following their established
patterns of navigation to reach the page “Current Course
Schedule” or pages for the BS and MS programs. As the
Figure shows, once the quicklinks were introduced, the visi-
tors recognized their presence and adopted these quicklinks
permanently into their usage pattern of this web site.

Visitors going to the “Courses”, “BS”, and “MS” page how-
ever did not adopt quicklinks to the same degree. Even
though all three quicklinks were linking to pages that would
otherwise have taken two links to get to, thus providing the
users the same benefit of saved navigational effort, some
links were used more than others.

The hypothesis we had prior to the evaluation of the useful-
ness of the quicklinks was that visitors coming to the web
site more often know what to look for and where to look

20. Jan 9. Feb 1. Mar 21. Mar

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f V
isi

to
rs

 u
sin

g
Q

ui
ck

lin
ks

Current Courses
BS Program
MS Program

Figure 7: Percentage of all visitors getting to the
current course schedule, BS program and MS pro-
gram using quicklinks

for it. Visitors interested in the current class schedule are
more likely to be current students than those accessing the
information page on the Bachelor’s program and therefore
more likely to follow their established navigational behavior
and less likely to switch to quicklinks. While this seemed to
be true as about twice as many visitors to the BS program
used quicklinks than visitors to the courses page, we defer
this question which visitors adopt usability improvement un-
der which circumstances to future work. However, we can
already conclude that navigational improvements such as a
quicklink do offer a benefit to users and change user behav-
ior on web sites.

7.4 Performance of flexiweb
The time required by flexiweb to find each pattern depends
on the complexity of the pattern matched. When it comes
to the pattern “Skipping irrelevant nodes”, flexiweb took
about 2 min 45 seconds on a CoreDuo workstation to process
a slice of an Apache log file containing about 2.3 million page
hits. The complexity of the other patterns is similar.

8. CONCLUSIONS AND FUTURE WORK
We have introduced the concept of web site-independent
user behavior patterns which can be found across web sites
and showed examples extracted from an analysis of 48 differ-
ent web sites totaling more than 65 million hits in 10 months.
We have proposed and evaluated a new language in which
webmasters can express optimizations for their web sites;
each optimization is effectively a rewrite rule that matches
user patterns and based on the matches, transforms web
pages. Our system, flexiweb, implements our language. We
have used flexiweb in a live deployment and demonstrated
that visitors quickly adopt the usage of such optimizations.

There remain research questions to be investigated in fu-
ture work. For example, we need to understand further how
and under which circumstances navigational improvements
such as quicklinks are adopted by visitors and how naviga-
tional improvements should be designed to facilitate that
process. Further, we will need to investigate what is the
“right” amount of optimization, as too much quicklinks to
“hot” topics will certainly confuse visitors and eventually
lead to a degradation of the system. Finally, researchers
will have to look for and identify patterns that can be uni-
versally applied across web sites. This quest may partially
be driven by the body of related work in human cognition
and HCI and should eventually provide a set of common
improvements that can be used as guidelines for create new
web sites and provide enhancements to current ones.

9. REFERENCES
[1] P. D. Bra, A. Aerts, B. Berden, B. de Lange,

B. Rousseau, T. Santic, D. Smits, and N. Stash. Aha!
the adaptive hypermedia architecture. In Proceedings
of the ACM Hypertext Conference, 2003.

[2] M.-S. Chen, J. S. Park, and P. S. Yu. Data mining for
path traversal patterns in a web environment. In
ICDCS ’96: Proceedings of the 16th International
Conference on Distributed Computing Systems
(ICDCS ’96), page 385, Washington, DC, USA, 1996.
IEEE Computer Society.

[3] B. D. Davison. Predicting web actions from html
content. In HYPERTEXT ’02: Proceedings of the
thirteenth ACM conference on Hypertext and
hypermedia, pages 159–168, New York, NY, USA,
2002. ACM Press.

[4] H. Lieberman. Letizia: An agent that assists web
browsing. In C. S. Mellish, editor, Proceedings of the
Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI-95), pages 924–929,
Montreal, Quebec, Canada, 1995. Morgan Kaufmann
publishers Inc.: San Mateo, CA, USA.

[5] B. Mobasher, N. Jain, E.-H. Han, and J. Srivastava.
Web mining: Pattern discovery from world wide web
transactions. Technical Report 96-050 (96-050),
September 1996.

[6] T. Munzner. Drawing large graphs with h3viewer and
site manager. In GD ’98: Proceedings of the 6th
International Symposium on Graph Drawing, pages
384–393, London, UK, 1998. Springer-Verlag.

[7] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu. Mining
access patterns efficiently from web logs. In PADKK
’00: Proceedings of the 4th Pacific-Asia Conference on

Knowledge Discovery and Data Mining, Current
Issues and New Applications, pages 396–407, London,
UK, 2000. Springer-Verlag.

[8] M. Perkowitz and O. Etzioni. Towards adaptive web
sites: conceptual framework and case study. Artificial
Intelligence, 118(1-2):245–275, 2000.

[9] E. Ramp, P. D. Bra, and P. Brusilovsky. High-level
translation of adaptive hypermedia applications. In
ACM Hypertext Conference, 2005.

[10] B. Shneiderman and P. Maes. Direct manipulation vs.
interface agents. interactions, 4(6):42–61, 1997.

[11] M. Spiliopoulou and L. C. Faulstich. Wum: A tool for
web utilization analysis. Lecture Notes in Computer
Science, 1590:184–203, 1999.

[12] T. Tsandilas and m. c. schraefel. User-controlled link
adaptation. In HYPERTEXT ’03: Proceedings of the
fourteenth ACM conference on Hypertext and
hypermedia, pages 152–160, New York, NY, USA,
2003. ACM Press.

[13] A. Wexelblat and P. Maes. Footprints: history-rich
tools for information foraging. In CHI ’99:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 270–277, New
York, NY, USA, 1999. ACM Press.

[14] T. W. Yan, M. Jacobsen, H. Garcia-Molina, and
U. Dayal. From user access patterns to dynamic
hypertext linking. In Proceedings of the fifth
international World Wide Web conference on
Computer networks and ISDN systems, pages
1007–1014, Amsterdam, The Netherlands, The
Netherlands, 1996. Elsevier Science Publishers B. V.

[15] E. Zhu. Hypermedia interface design: The effects of
number of links and granularity of nodes. Journal of
Educational Multimedia and Hypermedia, 8(3), 1999.

