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Abstract—LoRaWAN is a MAC-layer protocol for long-range
low-power communication. Since its release in 2015, it has
experienced a rapid adoption in the field of Internet-of-Things
(IoT). However, given that LoRaWAN is fairly novel, its level
of security has not been thoroughly analyzed, which is the
main objective of this paper. We highlight the security fea-
tures present in LoRaWAN, namely activation methods, key
management, cryptography, counter management, and message
acknowledgement. Subsequently, we discover and analyze sev-
eral vulnerabilities of LoRaWAN. In particular, we design and
describe 5 attacks: (1) a replay attack that leads to a selective
denial-of-service on individual IoT devices, (2) plaintext recovery,
(3) malicious message modification, (4) falsification of delivery
reports, and (5) a battery exhaustion attack. As a proof-of-
concept, the attacks are implemented and executed in a controlled
LoRaWAN environment. Finally, we discuss how these attacks
can be mitigated or protected against.

Index Terms—LoRaWAN, security, replay attack, eavesdrop-
ping, bit flipping, ACK spoofing.

I. INTRODUCTION

The fundamental value proposition of the Internet-of-Things
(IoT) is to enable new value cases by remotely monitoring
and controlling distributed embedded systems, which together
with their low cost will result in pervasive deployments. It is
predicted that there will be 13.5 billion connected objects in
use by 2020 [1].

When new networked devices are monitoring and able to
interact with our environment in a pervasive density, security
against malicious use becomes paramount. Unfortunately, at
present, IoT devices are easily exploited by attackers, because
many of these devices are shipped with insecure defaults
or insecure, remotely exploitable code [2]. As a result, [oT
products have already been used to launch major distributed
denial-of-service attacks [2].

To reach a mature level of IoT security, many challenges
need to be overcome. For example, there is a lack of standards
for secure IoT development. Also, there is no accepted refer-
ence architecture among vendors. Moreover, [oT products and
services need cooperation of many technologies and protocols,
making security of IoT even harder to be guaranteed [3].
Other challenges include IoT product deployment in insecure
or exposed environments and resource constraints in embedded
systems, which may limit security options [4].

Aside from a lack of standards and reference architectures,
also the protocols and methods with which IoT are to be
networked to the cloud are still under heavy development.
Low-Power Wide-Area Network (LPWAN) technologies are
designed to connect IoT devices with low-power requirements,
and at long range and low cost. The Long-Range Wide-Area
Network (LoRaWAN) is a new MAC-layer protocol in the
family of LPWANSs. It is based on LoRa radio technology,
which is a chirp-spread-spectrum type of wireless modulation.
The first LoORaWAN specification was released in Jan. 2015
by the LoRa Alliance and ever since LoRaWAN has seen a
steep adoption curve.

The popularity of LoRa has sparked a lot of research, but
mostly from a performance perspective, e.g., see [5]. To the
best of our knowledge, we have been the first to study the
security of the LoRaWAN protocol stack and its vulnerabilities
in a systematic way. We provide a vulnerability analysis,
outline several possible attacks and describe security solutions
for LoRaWAN.

This paper is organized as follows. Section II provides an
overview of related work. Section III summarizes the key se-
curity features present in a LoORaWAN. Section IV introduces
several possible attacks against a LoORaWAN. Moreover, proof-
of-concept experiments are conducted to demonstrate those
attacks in a controlled environment. Section V presents sug-
gestions to mitigate or prevent the discussed attacks. Section
VI concludes our work.

II. RELATED WORK

Although a number of research groups have looked at the
performance characteristics of LoORaWAN, to date no work has
systematically analyzed the security of the LoRaWAN protocol
stack.

Miller [6] provides a brief overview of LoRaWAN security
and outlines how to configure the security features in the
protocol to set up a LoRaWAN. He describes the location of
the key material in a LoRaWAN setup, and alerts that flaws in
key management could compromise a backend. The work does
however not analyze the protocol nor evaluates the security of
message exchanges.

A notorious problem in protocol security is the insufficient
use of randomness or nonces (‘“number used once”). Zulian et



al. [7], [8] analyze security threats in LoRaWAN by focusing
on the generation of DevNonce, which is used in the join
request. They study the randomness of DevNonce and provide
alternative generation methods. Also Na et al. [9] focus on
vulnerabilities in the join procedure in LoRaWAN. Michorius
[10] investigates the issue of privacy leakages if multiple users
attempt to access the same application server. He compares
encryption algorithms and modes based on time-to-compute
and resources used. Naoui et al. [11] compare existing key
management protocols for 10T, and propose to add proxy
nodes that drive a reputation system to enhance the security
mechanisms of LoRaWAN. Aras et al. [12] highlight security
issues at the physical layer, and develop practical attacks
around selective jamming. Countermeasures and suggestions
are given to mitigate these attacks. Lee et al. [13] analyze the
potential of a bit-flipping attack.

Although some research has been done on LoRaWAN
security, an analysis of the communication and enrollment
protocol from a security analysis has not been done. In this
paper, we fill this gap. The next section will describe the
protocol design of LoRaWAN by the standard; the section
after this will present the results from our security analysis.

III. SECURITY FEATURES OF LORAWAN

This section provides an overview of the security features
of the LoRaWAN protocol, specification 1.0.2. Instead of
reiterating the standard by function, we will review the speci-
fication from a functional perspective. Following the classical
definition of security, we care about the confidentiality, in-
tegrity and availability of a system. As the communication
channel is wireless and thus available to anyone for injection
and modification, also the authenticity of communication — in
other words do the packets indeed originate from the alleged
source — and the protection against originally legitimate but
maliciously re-injected traffic become a concern. Finally, in
an IoT application context we also need to raise the issue
of device and key enrollment. As IoT devices are produced
and stored in bulk and shipped to an end-user who would
like to connect a device to his or her account, downloading
a device/user/application-specific key to the unit becomes
necessary. In the following, we will describe the approach
LoRaWAN takes on each of these aspects.

A. Channel Confidentiality

LoRaWAN v1.0.2 uses a pair of two distinct keys, the
network key NwkSKey, and the application key AppSKey.
The reason behind this is that LoRaWAN was designed with
the business case of a network or telecom operator in mind,
who deploys and operates the LPWAN, while IoT device
owners and IoT service providers may use the infrastructure
as a black box to establish connectivity between them. As
confidentiality and integrity checking is required with different
data scopes on the air interface between the IoT device and
the network infrastructure (owned by the telco), and between
the IoT device and a third-party application provider in the
backend, the network key NwkSKey secures the former, while
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Fig. 1. Key usage in a LoRaWAN.
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Fig. 2. LoRaWAN uses a AES in counter mode for message encryption.

the end-to-end connection is protected by the application key
AppSKey as shown in figure 1.

When a message is sent to the application server, the frame
payload is encrypted first by the AppSKey. Data confidentiality
is protected by a block cipher operated in counter mode (CTR).
This specific construction, shown in figure 2, generates a
stream of random bytes using the pseudo-random permutation
provided by a block cipher, which is then used as a key stream
to encrypt the plaintext by an exclusive OR. As the CTR is
thus essentially a stream cipher, the exact key stream may
never be used twice. This is realized in counter mode by use
of a nonce per connection, and a monotonically increasing
block counter to accommodate messages of multiple block
lengths. LoRaWAN follows the CTR design to the letter:
it chooses AES as a block cipher implementation and uses
LoRa’s message counter FCntUp or FCntDown as nonce,
which is continuously incremented for each message. If the
message counter never repeats, then this mode and CTR mode
are identical.

B. Enrollment Protocol

As two keys are needed to transmit a frame to the network
and application server, this key material needs to be somehow
downloaded on each participating IoT device. LoRaWAN
specifies two mechanisms for this activation procedure, Acti-
vation by Personalization (ABP) and Over-the-Air Activation
(OTAA).

1) Over-the-Air Activation (OTAA): An end device will
first send a Join Request, which contains a 3-byte DevNonce
— a random number. After the Join Request is received by



the network server, the network server will check whether
the end device can be accepted or not. If the end device
is not accepted, there will be no response. If the device is
accepted, then the network server will send a Join Accept
message to the end device. The Join Accept contains a 3-byte
AppNonce, which is generated by the network server. After
the AppNonce is received by the end device, both sides use
the nonces to generate the network and the application keys.
As otherwise any eavesdropper would be able to generate
NwkSKey and AppSKey, OTAA derives the network and
application keys by encrypting the data using the AppKey, a
16-byte device-unique key which is assigned by application
owners to end devices.

NwkSKey = AESE (AppKey, 0x01 || AppNonce || NetID || DevNonce || pad )
AppSKey = AESE (AppKey, 0x02 || AppNonce || NetID || DevNonce || pad )

In order to obtain NwkSKey and AppSKey, the IoT device
needs to trade-in the long-term AppKey after commissioning
or a volatile reset. OTAA uses unique AppKeys to prevent
that after a compromise of one end device the whole network
is impaired, and if the system keeps track of past DevNonce
replayed join attacks can be deterred. Join Request messages
are not encrypted, Join Accept messages are encrypted after
being digitally signed. A signed Join Accept message is
encrypted using AES in Electronic Codebook (ECB) mode,
which means that the plaintext is directly encrypted using the
key. This has the disadvantage that identical plaintext messages
are encrypted into identical ciphertexts. ECB is generally not
recommended as it trivially allows a traffic pattern analysis and
breaks the semantic security of a communication system. How-
ever, as the join message should never be repeated because
of two nonces in the key derivation function of NwkSKey
and AppSKey and the strong pseudo-random permutation of
AES, the usage of ECB in this instance does not create major
complications.

2) Activation by Personalization (ABP): ABP skips the ex-
change of join messages. Before activation, unique parameters
— DevAddr, NwkSkey and AppSkey — are assigned to the end
device and are stored in the server. When an end device is
trying to communicate with the server, it will send messages
directly. These messages are encrypted and signed, such that
only the corresponding network server can read the message.
If devices are setup by ABP, NwkSkey and AppSkey will be
used across sessions until updated in the device.

C. Integrity and Authenticity Validation

A cryptographic message integrity code (MIC)! is used
in LoRaWAN to provide an integrity check on the MAC
header and payload data. The MIC for a data message is
calculated using the NwkSkey and AES-CMAC method. When
uplink messages arrive at the network server, the server will

'In cryptography, we would normally refer to this as a message authentica-
tion code or MAC, but due to the confusion with the in networking ubiquitous
message access control address or MAC address will refer to them as MICs
throughout the paper.
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Fig. 3. A message integrity check is computed on the MAC header and
payload.

first check the message integrity and, if it passes the check,
transfer the message to the application server. For Join Request
messages, the MIC is generated by using the AppKey instead
of NwkSkey. Figure 3 shows the decomposition of the protocol
data unit at the physical level into MAC header and payload,
and frame contents. The light shaded area is protected by the
MIC generated from the NwkSkey, the dark shaded area is
encrypted by the AppSKey.

D. Replay Protection

Counters are an important component in replay protection
and, as the message counter is used in LoORaWAN to generate
the key stream, are also essential to the confidentiality of the
communication channel. For each end device, there are two
frame counters named FCntUp and FCntDown. FCntUp is
counting uplink messages in the end device, while FCntDown
is counting downlink messages in the network server. In
order to keep uplink and downlink messages in sync, there
is a limit value MAX_FCNT_GAP. If the difference between
number of uplink and downlink messages is larger than
MAX_FCNT_GAP, subsequent frames will be discarded. Both
16-bit and 32-bit frame counters are allowed in LoRaWAN.
If the counter overflows, it will be started from 0 again.
According to the LoRaWAN specification, the counter value
will be set to zero after resetting.

IV. ATTACKS TOWARD LORAWAN

In this section, we present five vulnerabilities in the protocol
and describe actual attacks that could exploit them. For verifi-
cation, we have implemented all attack vectors in a hardware
or software proof-of-concept. The attacks target all three main
aspects of communication security: first, we demonstrate that
it is possible to eavesdrop and decrypt the content of a frame
under certain circumstances. Second, we show that the content
of a packet may be modified outside of the integrity check
provided by the protocol. Third, we highlight that messages
could either be replayed, or a node tricked into believing that a
message has been received by the gateway when it actually has
not, and outline a battery exhaustion attack. This compromises
the availability of the network.

In the following, we will discuss each of these five attacks
in detail, and present the exploit and necessary preconditions.
All attacks are summarized in an attack tree in the conclusion.



A. Replay attack for ABP-activated nodes

As discussed during the previous section, the ABP-activated
end devices are using static keys which are preprogrammed
into the device. Moreover, the protocol specification v1.0.2
states:

“After a JoinReq - JoinAccept message exchange
or a reset for a personalized end device, the frame
counters on the end device and the frame counters
on the network server for that end device are reset
to 0.

Therefore, after resetting, an ABP-activated end device will
reuse the frame counter value from O with the same keys. In
this case, an attacker can grab messages in the last session
with larger counter values and reuse it in the current session.
Besides resetting, another method to restart the counter is a
counter overflow. After the counter value reaches its maximum
value, the counter will be reset and will restart from 0. With
counter values from the last session and the same session
keys, an attacker can also replay previous messages to cut
off the communication between the end device and the server.
This holds both for ABP and OTAA. However, attacking an
ABP-activated end device will take less time as both reset
and overflow work if the attacker has the ability to reset end
devices.

A message replay is trivial to implement for an adversary.
First, monitor and store the uplink messages of an ABP-
activated node. Second, wait until the device has reset the
counter value FCnt, which is sent in clear text. Assume the
uplink counter value of the malicious message is F'Cnt,,,
the uplink counter value of the end device is F'Cnteyrr, and
the maximum accepted counter gap is Gap. Third, replay any
message with FCnt,, — FCnteyrr < Gap to fit the running
window algorithm of LoRaWAN and thus be accepted by the
network if replayed. The most harmful attack is to select the
counter value FCnt,, = Gap + FCntcyr, since it will take
the devices the longest time to recover.

Figure 4 shows an example of a replay attack. Here the
maximum counter gap is the default protocol value of 16384.
The malicious message is the message in the last session with
same device address, session keys and larger counter value.
As long as the attacker sends this message in this session to
the network server, and it is accepted, the messages from the
victim with counter value smaller than 70 will be ignored.
For the attack, minimal hardware is required: a traffic sniffer
as well as a LoRa transmitter to replay messages. While in
a small LoRaWAN with only a few end devices, the attacker
may need to wait a long time for a counter overflow, the attack
can be efficiently conducted for ABP-activated end devices in
a large deployment. Once the attacker gets the largest possible
counter value for one end device, it can periodically replay the
message and block the end device permanently (or until the
session keys of the end device are changed, which requires for
ABP a separate channel or physical access). This replay vector
thus implements a denial-of-service attack on the availability
of an LPWAN deployment.

Proof-of-Concept experiment

A replay is possible using any LoRa transceiver to achieve
the attack as long as the device is able to transmit and
receive LoRa wireless messages. For our proof of concept,
we had a sensor node activated with a LoRaWAN provider,
and operated a malicious local gateway (250 Euro) as well as
a malicious LoRa sensor based on the popular RN2483 chip
(10 Euro) to inject the traffic, see figure 5. Both are off-the-
shelf components; in principle the attack can also be launched
without a dedicated gateway at the expense of less convenience
as the gateway can capture concurrent transmissions.

As a heartbeat to demonstrate the success of the attack and
validate that the DoS outage matches the predicted value,
we had the sensor report a field measurement every thirty
seconds via LoRaWAN to a backend server. The malicious
gateway would monitor all frequencies in use by LoRa, and
complete a dictionary. In the top highlighted area of the
gateway trace shown in figure 6, the attacker notices a device
reset and simply re-injects a previously saved message (bottom
highlighted area), in this case with the counter value 10. As
the subsequent frames sent by the legitimate sensor are out
of sequence, the sensor will need to increment and transmit
until back in sync. As devices obey a specific low-volume
duty cycle, the sensor is effectively blocked during this time.
The reporting backend of the LoRa application service shown
in figure 7 confirms the replay and an outage for 5 1/2
minutes. Note that the denial-of-service was accomplished
during the entire time by means of a single packet, in contrast
to other DoS attacks such as SYN floods, this attack thus
leaves no abnormal adversarial traffic such as flooding which
is detectable by the network.
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Fig. 5. Setup for LoORaWAN replay attack.

Thu Apr 13 16:04:50 2017

DevAddr 89140126 , Counter number is 3 , Physical Payload is 4089140126000300530cb6ceal637¢08d3c8240257
Thu Apr 13 16:05:49 2017

DevAddr 89140126 , Counter number 1s 5 , Physical Payload is 408914012600050086463981fa78962f244c5624f0
DevAddr 24170126 , Counter number 1s 49817 , Physical Payload is 40241701260099¢20371b1fe383188ac82
DevAddr 89140126 , Counter number 1s 6 , Physical Payload 1s 40891401260006003d226¢33a4882c44af7cSbac9b
Thu Apr 13 16:06:48 2017

DevAddr 24170126 , Counter number is 49819 , Physical Payload is 4024170126009bc203dd7d7baS5fd710d2
DevAddr 89140126 , Counter number is 7 , Physical Payload is 40891401260007002972597f1f3eab3c254bcch946
DevAddr 24176126 , Counter number is 49820 , Physical Payload is 4024170126009cc20337ed4acfba5e46fd
Thu Apr 13 16:07:47 2017

Thu Apr 13 16:08:46 2017

DevAddr 89140126 , Counter number is 10 , Physical Payload is 4089140126000a0031dSef2a97d488b8232¢8¢9f39
DevAddr 89140126 , Counter number 1s 0 , Physical Payload is 4089140126000000473663cb]1f6a23ec3bf98c4798
FETE 15 & Teset!

[3, 5, 6, 7,10, 0]

>>RN2483 1.0.1 Dec 15 2015 09:38:09

radio tx 40891401 dSef2a97d488b8232¢8c9f39

>>0k

Attacking......

Thu Apr 13 16:09:48 2017
DevAddr 89140126 , Counter number is 10 , Physical Payload is 4089140126000a0031d5ef2a97d488b8232¢8¢9f39
Thu Apr 13 16:10:47 2017

DevAddr 89140126 , Counter number is 2 , Physical Payload is 4089140126000200455e51f71a43d61cba6736abcc
DevAddr 89140126 , Counter number 1s 3 , Physical Payload is 40891401260003002b0cb4c2a1637e0bd3d68a025f
DevAddr 89140126 , Counter number 1s 4 , Physical Payload is 40891401260004005477e5b703fea2f3644548a6bf
Thu Apr 13 16:11:46 2017

DevAddr 24170126 , Counter number 1s 49838 , Physical Payload is 402417012600aec203808788497e5¢79a6
DevAddr 89140126 , Counter number is 5 , Physical Payload is 40891401260005004b46358dfa78962e24a11899da
Thu Apr 13 16:12:45 2017

DevAddr 89140126 , Counter number is 6
Thu Apr 13 16:13:44 2017

DevAddr 89140126 , Counter number 1s 8 ,
DevAddr 89140126 , Counter number 1s 9 ,
Thu Apr 13 16:14:43 2017

DevAddr 89140126 , Counter number 1s 10 ,
Thu Apr 13 16:15:42 2017

DevAddr 89140126 , Counter number is 11,
DevAddr 89140126 , Counter number is 12 ,

, Physical Payload is 408914012600050045206133a4882c42af70467d84

Physical Payload is 408914012600080022c12e31a31c5b626b4cSb62eb
Physical Payload is 40891401260009003e507f00b4b0878653e65329af

Physical Payload is 4089140126000a0015d4e52297d488bd23a28b e84
Physical Payload is 4089140126000b001432307772c1eaeb47678fb066
Physical Pavload is 4089140126000c003d4905¢528298f fad1830f2529

Fig. 6. Log file of malicious gateway.

B. Eavesdropping

As discussed before, LoRaWAN implements channel confi-
dentiality through AES in counter mode. Instead of setting the
counter as a nonce, the packet counter value is used as input.
As during a reset this counter value is reset according to the
specification while the key remains in place, this means that
the block cipher will recreate exactly the same key material.
This is the classic textbook case of a key stream reuse.

In a stream cipher, a plaintext P is combined through an
exclusive OR with a key stream to obtain the ciphertext C.
When given two messages P, and P, encrypted under the
same keystream, P, & K = C1, P, & K = (5, an adversary
could eliminate the secret key as

CLdCy=(PLaK)® (PaK)
PoPe(KaK)
——

cancels out

=P @ P

a 6 22 343437 2030 323400
- 5:25 61 22 34 3936 2030 32 3400
a 4:5 20 22 3534332030 323100
- 49 22 34 3830 20 30 32 31 00
- 71 22 3139322030 323200
a 49 22 34 3830 2030 32 31 00
Al 7 41 22 353237 2030 323300
- 5:4 61 22 36 3837 2030 32 3400
- 134 22 343934 2030 323300
- 83 22 34 3438 2030 32 3200

Fig. 7. Log file of the victim’s server.

Since the ciphertexts are transmitted over the air and known,
in order to get the plaintexts, we first guess a part of the content
in Py, then derive the part of P, at the corresponding position.
If all the plaintexts are readable, the guess is possibly correct.
The more resets, the more likely it becomes to recover the
messages. This method is also called crib dragging [14].

Proof-of-Concept experiment

Executing the attack requires only a LoRa node configured
as a pass-through receiver or an off-the-shelf gateway to
capture traffic from all sensors in range. The attack requires
only the build-up of a dictionary per IoT device as identified
by the DevAddr and FCnt value. As the payload size is highly
limited and due to the air-duty-cycle limitation, developers are
conditioned to minimize the amount of transmitted informa-
tion, and thus data content in LoRaWAN can be expected to
be highly condensed and structured. As IoT devices will be
produced in high volume and devices can be assumed to be
readily available to an adversary for purchase, the data format
must thus be assumed to be publicly known.

That a key stream reuse will lead to a problem is obvious
and does not require any formal demonstration. After the
implementation of the proof-of-concept, we thus evaluated
the effectiveness of a data recovery attack of sensor value
information.

In our experiment, a sensor is configured to send data
messages periodically, the default frame payload for data
messages in these devices is 16 bytes, consisting of one
light measure value and one temperature value. A malicious
gateway keeps tracking the uplink messages from the sensor.
The attack methods differ only slightly for when numbers
or alphanumeric strings are transmitted, so we confine to
only presenting the case for numbers. Suppose that from an
inspection of the device the adversary knows that the length
of the plaintext is 8 digits, which means that there are only
12 possibilities for one digit, numbers from 0 to 9, a space,
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or a placeholder. A message is divided into 2 parts: light and
temperature, with one space between their values. The first
part of the message gives a light value of at least 2 digits.
The second part of the message gives a temperature value of
3 digits.

Choosing P; as the victim and P, as the reference object
with both plaintexts unknown, we can traverse 12 options for
each digit for P;, and check the corresponding P» to see
whether it is readable and consistent. Using the regular patterns
as constraints to decrease the number of possible options
for plaintexts, the victim’s plaintext can be derived. Figure
8 shows a histogram of the number of possible candidates left
after decryption as a function of the obtained sensor values.
We see that the reconstruction is effective of structured values
as soon as a handful of messages have been obtained. After 3
resets, the number of possible candidates is calculated. In the
24 valid samples, 45.8% have only one candidate, identical
to the original data. For the others, the number of possible
candidates is highly decreased from 122 to 4, 8, 9, 36, etc.
This attack is based on the assumption that the attacker is
able to perform a reset and affect the light sensor value. If the
attacker is not able to affect the sensor readings, the number
of resets needed will be larger.

If the sensor data are not numerical values but for example
bitmasks — imagine a bit value indicates whether movement
was detected or light switched on in a particular room or
corridor —, the traffic analysis would not need to recover the
original values but only indicate differences between frames.
This result may be obtained given two LoRa messages with
different values.

C. Bit-Flipping Attack

While LoRaWAN messages are both encrypted and
equipped with a message integrity check, the two features are
not applied at the same scope. Recall from the description
of the protocol that the cryptographic message integrity code
on the payload data and header information is checked and
terminated by the infrastructure provider, while the payload
encryption using the AppSKey is undone by the applica-
tion provider. This means that in between the infrastructure
operator’s network server and the IoT solution provider’s
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Application
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connectivity provided over public network
with adversarial interference

Fig. 9. The setup of a bit-flipping attack.

application server, the content cannot be checked for integrity
and authenticity.

While good practices in network design would place the
internal infrastructure of an infrastructure operator into a
separate private network compartment, the link between the
LPWAN operator and a third party application provider would
typically run over a public network such as the Internet. Unless
other precautions are taken such as a tunnel with validation or
pinning of certificates, the messages between the two parties
could be altered in content or rerouted.

While a block cipher normally reacts very sensitively to bit
modifications, a principle called the avalanche effect which
would normally render a bit-flipped message unreadable, as
AES is only used as a key stream generator and a stream cipher
is easily malleable unless an integrity check is combined
with the decryption. LoRaWAN, however, deviates from the
recommended practices of using authenticated encryption, and
terminates the integrity check too early.

The vector is possible if an attacker can insert himself
anywhere between the LPWAN operator and the IoT solution
provider, see figure 9. There exist a variety of techniques
for this, ranging from routing-based approaches (insufficiently
secured routing protocols, BGP prefix hijacking, IP source
routing option, etc.) to physical and link-layer based attacks (a
compromised device on the path, a malicious actor in a shared
data center, etc.), which are beyond the scope of this paper. As
in a stream cipher bit modifications in the ciphertext affect the
exact bit position in the plaintext in a predictable manner, it is
thus possible for the adversary to arbitrarily modify the content
of the sensor readings (and in case of key reuse, pretend that
the sensor value had originated from a different device). In
addition, header, routing information, and commands could
also be modified in this way.

Proof-of-Concept experiment

While from a cryptographic point of view the feasibility
of a bit-flipping attack is evident, we also implemented a
proof-of-concept for completeness sake, see figure 10. Indeed,
the experiments show that given a man-in-the-middle attack
between a network operator and an application server we
registered, we were able to (1) modify the FrmPayload and
change its room temperature data from “027” to “327”, (2)
increase the FCnt value until it was larger than the FCnt at
the server, after which the message dropped by the application
server, and (3) flip bits of DevAddr, so that the application
considered the message to be from another end device.



Mon May 22 16:43:01 2017

DevAddr 99999999 , Counter number is 440 , Physical Payload is 409999999900b801295dcbdd2ff168bc7d659d7944
[Network Server]: Signature is correct. Message is pushed to application server
[Network Server]: Message sent to application server is 409999999900b801295dcbdd2ff168bc7d659d7944

[Attack -

316 ]: Bit fliping..... Message 409999999900b801295dcbdd2ff168bc7d is changed to 409999999900b801295dcbdd2ff268bc7d

[Application server]: Message is not the same. Received 612 327[] . Mote sent 612 027[

Fig. 10. An example result of a bit-flipping attack.

TABLE 1
PHYSICAL PAYLOAD FORMAT OF AN ACK MESSAGE.
MHDR  DevAddr  FCtrl  FCnt MIC
60 88889999 20 0BOO  BAEIS57A

D. ACK spoofing

To maximize battery life, the data-acknowledgement mech-
anism in LoRaWAN is made optional to reduce the time the
radio needs to be powered up.

Table I shows an acknowledgement message (FCtrl code
20) sent over the air, addressed to device 88889999. As can
be observed, the ACK message does not state which message
it is confirming. While there is a cryptographic integrity value
that lets the IoT device confirm the authenticity of the ACK,
the frame counter of the ACK is the sequential number of all
downstream messages. A captured ACK could therefore be
delayed and used to selectively acknowledge the successful
receipt of another unrelated message, even when it has not
arrived at backend provider.

As LoRaWAN relies on spread-spectrum techniques with
a high spreading factor to realize a fault-tolerant link under
minimal power requirements, the transmission of a LoORaWAN
packet takes comparatively long. A versatile attacker without
access to a gateway could thus prevent the receipt of the ac-
knowledgement through selective jamming of the IoT device,
and would be later able to knock out any uplink message while
replaying the previously cached ACK.

@é@@

End Device Gateway Network Server Application Server
UCtr = 20,
DCtr=10 | w1, yctr =20

M1,UCtr=20 _| Mi,UCr=20 _

X ACK, DCtr = 10
—|—>
—>|—>
— —>x
| M2, UGtr = 21 X

ACK, DCtr =10
e = = T

Fig. 11. ACK messages may be repurposed to acknowledge other frames
than originally received by the application provider.

Proof-of-Concept experiment

For the demonstration of selective ACK spoofing, we
assume that the gateway is malicious and may selectively
suppress certain frames from transmission. Such a selective
packet loss may be implemented by not sending the frame at
all, or in a more subtle way by transmitting the packet to a
wrong downlink port number so that the frame will be ignored
by the actual recipient.

Figure 11 shows the procedure of the ACK spoofing experi-
ment in effect. The end device sends a confirmed message M1
to gateway with UCtr = 20. The message is accepted by the
server and the application server will confirm the successful
message delivery. The network server would then create a
cryptographic MIC with a confirmation of the delivery with a
DNCtr =11 and forward it to the gateway. Since downlink
transmission is disabled at the gateway, no messages are sent
to the end device. Since there is no ACK received by the
end device, the device retransmits M1 for 7 times, and then
considers M1 to be lost or rejected. The LoRa chip informs
the IoT device’s CPU of this situation through a “mac_err”. A
while later, the attacker would like to drop a status message
from the IoT device but let the sender believe it was confirmed
by the network. When message M2 is received, the attacker
enables the gateway downlink transmission and discards the
frame. As no frames were sent in between, the expected
DNCtr frame counter of the device is still 10. By sending out
the previously signed and cached ACK, the end device will
believe the frame to be received and processed by the network
and the chip reports a “mac tx ok”, while the frame has not
been passed along.

E. LoRa class B attacks

LoRaWAN defines three modes of operation to accommo-
date the diverse use cases of IoT deployment scenarios. In
the most basic case, field devices would like to wirelessly
upload status messages to an application server, and wait for
an immediate reply by the application server in response to
the measured data. If no download message is received within
a short timeframe, the transmitter again powers down until
the next time the device sends out a message. This so-called
class A network thus realizes the most energy-efficient battery
operation, but comes at the disadvantage that instructions to
sensors can only be relayed when they report in by themselves
based on their preconfigured duty cycle. In class B networks,
the field devices in addition periodically wake up to wait
for any incoming messages during extra receive windows.
These durations are specified by the beacons broadcast by
the gateway, but the receiver again powers down in between



these windows. In a class C network, the LoRa transceiver
is powered up all the time, which is ideal for applications
requiring constant availability of a downlink channel at the
expense of a significantly higher energy consumption.

The attacks described above were applicable to all LoRa
modes. In the following, we will outline specific class B vul-
nerabilities, which allow a malicious actor to drain the battery
of the field devices. As stated above, class B was created to
balance power consumption and the possibility to periodically
relay downlink instructions. In order to open receiving win-
dows at fixed times, gateways should synchronously broadcast
a beacon to provide a time reference to the end devices [15].

TABLE 1II
BCNPAYLOAD FORMAT [15].
BCNPayload ‘ NetID Time CRC GwSpecific CRC
Size (bytes) | 3 4 1 7 2

The beacon frame is basically a PHY layer header followed
by the beacon payload. The BCNPayload for the EU 863-
870MHz ISM band is shown in Table II. Beacons are not
encrypted, nor otherwise protected against malicious modifi-
cation. While the beacon payload includes a CRC to protect
the integrity of the beacon’s common part (Time and NetID),
a cyclic redundancy check is only suitable to help in the
detection of random bit flips as a result of a noisy channel
and not a suitable mechanism to guard against an adversarial
use case scenario. As a CRC is non-keyed and linear, it
may be trivially updated by an attacker modifying an existing
frame, as well as independently calculated in case the attacker
would like to inject a forged frame. As the content of the
BCNPayload is public knowledge and existing beacons list
the configuration values in plaintext, an attacker can send out
a beacon with malicious parameters, and that beacon would
be received and processed by the end devices.

The fields in the LoORaWAN beacon frame allow for two
fundamental attack vectors:

o Finding or spoofing the location of a LoRa gateway: The

7-byte value in the GwSpecific field in the BCNPayload
is a composite of a 1-byte InfoDesc key followed by a
6-byte value. When InfoDesc = 0, 1, or 2, the 6-byte
value contains the GPS coordinates of the antenna that is
broadcasting the beacon (3 bytes for the latitude and 3
bytes for the longitude). Given the lack of encryption or
an integrity check, the attacker can use this information to
locate the gateway, but also maliciously alter the location
of the gateway. As low-power devices will likely not
run a power-hungry GPS receiver, any location-based
service based on this information is thus vulnerable. Since
GwSpecific is used for end devices to notify the network
server when they are moving to another cell, faking the
GwSpecific will cause the end devices to send wrong
notices and cause the network server to have incorrect or
inconsistent information of the end device location.

e Battery exhaustion: If the attacker is able to create his

own beacons, it is possible that the attacker can send

beacons with a random or extreme wakeup time values.
In the first case, the adversary may disturb the downlink
operation as the device would wake up at different times
than expected by legitimate gateways. In the second case,
the device can be triggered to wake up frequently, thereby
increasing the power consumption of the sensor. The
ability to drain the batteries will let an IoT deployment
fail prematurely, resulting in an early expensive write-off
or a labor-intensive replenishment in the field.

V. ATTACK MITIGATION AND SECURITY SUGGESTIONS

In this section, we will discuss possible mitigation and
security suggestions with respect to the previously described
attacks. Some of the counter measures will require minor mod-
ifications on the firmware or the way LoRaWAN transceivers
are integrated into an IoT device, while others require mod-
ifications to the standard to mitigate the attack vector at the
root of the problem.

The work described in this article was performed when
LoRaWAN specification 1.0.2 was the most recent version.
Between the completion of our research and the camera-
ready version, a new version of the LoRaWAN protocol,
specification 1.1, was released which included several changes
that address some of the vulnerabilities we have discussed
above. As both specifications are supported, all of the results
presented above remain valid. In the following, we will hence
describe, in addition to our proposed controls, also the design
changes introduced with the 1.1 version.

A. Replay attack for ABP-activated nodes

The replay attack is based on the observation that the
NwkSKey and AppSKey are actually used as long-term key
material that remains unchanged after a counter reset, instead
of being restricted to a single session. In order to prevent this
attack from happening, the following measures could be taken:

o The use of activation by personalization should be min-
imized and if used, new keys should be downloaded
periodically. Device enrollment by OTAA does however
not mean the end device is secure, because counters can
overflow. Yet, the renegotiation on power-up means that
in over-the-air activation an attacker would wait for a
longer time to perform a replay attack.

o End devices should be physically protected to prevent a
malicious party to initiate a system reset. While this is
difficult to accomplish in a variety of IoT deployment
contexts, design changes such as non-volatile memory
may preserve the counter value in between resets. If the
attacker cannot reset the counter by resetting the end
devices, the only way to achieve the attack is to wait
for a counter overflow. This change significantly reduces
the exposure, but requires a change in the LoRaWAN
specification.

Fortunately, this modification is included as such in ver-
sion 1.1. Under the new specification, ABP devices must
use non-volatile memory to store the frame counters, and
re-initialization of an ABP end-device’s frame counters



is explicitly forbidden. An ABP device thus uses the
same session keys throughout their lifetime, and the
specification recommends that no rekeying is possible.
If this mechanism of non-volatile storage is correctly
implemented and not subject to for example glitching
attacks, the attack surface is significantly reduced as the
adversary must wait for a counter overflow. While this
will still occur, especially in busy networks, it will take
longer to be exploited by an adversary.

« To prevent the replay attack, the end device should be
required to rekey every time the counter reaches its
maximum value. If the end device is using OTAA, it
should go through the OTAA activation procedure again
to obtain new session keys. If the end device is using
ABBP, it should be re-configured, and session keys should
be changed.

B. Eavesdropping

The eavesdropping attack exploits that a block cipher in
counter mode is not secure if the counter value is allowed
to repeat. Specifically the case of a monotonically increasing
counter value is the classic example of how CTR mode can
fail in practice given volatile memory. Also here the problem
may be addressed through a variety of measures:

« Replace the counter value by a nonce (a number used
just once), which is derived from a cryptographically-
secure pseudo random number generator or a true random
number generator available on the sensor platform. While
this would immediately reduce the chance for a collision
to the unavoidable theoretical minimum of the birthday
paradox collision probability of one in 2b1°d§m, extra
care must be taken to prevent the IoT device from
starting up with the same seed value across boot ups
and installations. Harvesting unique entropy on embedded
systems is challenging, but resilient methods have been
developed to accomplish this.

« Rekey on reset in addition to any counter overflow. Since
this attack needs to collect several messages with the
same counter value and session keys, changing session
keys periodically can prevent the attacker from collecting
enough messages. If every time the counter value in the
end device reaches its maximum value, the end device
re-activates, there will not be enough messages for the
attacker to perform decryption. As discussed with the
replay attack, this is easier to achieve with OTAA than
with ABP.

The decryption success rate is related to the number of
messages that use the same key stream and same counter value.
As explained for the replay attack, resetting a device under
v1.1 will not help the attacker, so the decryption success rate
will decrease, as it now solely relies on counter overflows.

C. Bit-flipping attack

A malicious bit flipping of the sensor values in between the
infrastructure operator and application provider is possible due
to the too-early termination of the message integrity code in

the system architecture. This early termination is also present
in v1.1. While it is good secure practice to design networks
based on the defense-in-depth principle and for example expect
an SSL tunnel in between network and application server,
the LPWAN architecture and protocol should be resilient to
negligent deployment scenarios where such precautions are
omitted.

o The obvious solution to avoid an attack featuring a
malicious modification of the payload content is to run
the integrity check value at the application server and
not the network server. Ideally, a modern protocol de-
sign should implement authenticated encryption instead
of mere encryption, a lesson that has been repeatedly
reinforced in the long chain of attacks on protocols such
as Wi-Fi or TLS. This would however cannibalize some
payload bytes in the MAC payload to accommodate a
MIC checked by the application server. Equipping the
network server with the AppSKey is clearly undesired
with respect to business and deployment model, and
contra-productive with respect to a stringent security
design.

« A more radical but better approach would be to repurpose
protocol fields, which would require some changes to
the standard and firmware updates. Note that in the
LoRaWAN specification there are actually two checks
included. The MIC that runs a cryptographically strong
integrity check value over the MAC-layer payload, and
a CRC appended to the physical-layer payload, which
checks for bit flips at the physical-layer protocol data
unit. The additional coverage provided by the CRC is
only the inclusion of the data bits in front of the MAC
header, such as the radio preamble, while at the same
time providing a much weaker security service to the
MAC-layer payload. In other words, while any payload
modification detectable by the CRC can also be detected
by the MIC, there is an entire class of attacks that can
only be detected by the MIC, but never by a CRC. While
cyclic redundancy checks are trivial to compute, the
computational overhead of a MIC can also be designed
minimal, for example if relying on constructions such
as a Carter-Wegman message authentication code, and
RFC4418 defines with the UMAC algorithm an open-
standard high-speed MIC based on this principle.

While there is value in ensuring the integrity of the frame
when received by the network, a much better solution
would be to replace the CRC by a MIC as shown in figure
12. Although CRCs are trivial to compute and were usu-
ally favored for this reason over cryptographically-secure
checksums, specialized hardware acceleration for AES
has melted this argument away over the last decade. Such
a design would guard against any kind of modification to
the frame, and the freed-up bytes at the MAC layer could
be repurposed for a MIC for the application provider,
thus realizing authenticated encryption without a single
byte of payload capacity being lost. If such a solution
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Fig. 12. A repurposing of the fields will lead to better coverage against
stronger threat models, while not changing the amount of available payload
bandwidth in any way.

is realized, the channel between infrastructure operator
and application provider is protected against subversions
of confidentiality, integrity and authenticity regardless of
additional security measures taken in the network (which
should regardlessly be there).

D. ACK spoofing

The fundamental problem that enabled the ACK spoofing
and malicious repurposing of previously stored acknowledge-
ment frames is that the ACK message does not indicate which
message it actually confirms. This is also still the case in v1.1.
While the intentional frame loss by a compromised gateway
cannot be prevented as it is outside of the scope of both the
IoT device owner and the application server, there exist several
measures that could be taken to prevent the malicious replay of
an ACK in another context and detect excessive frame losses:

o With the change towards a MIC for both the connection
to the network server and the application server, it is
possible to add a cryptographic checksum with the re-
turned acknowledgement. The return value should include
the entire packet as sent by the field device. Costing no
additional bytes, it will enable the IoT device to confirm
that (a) the ACK belongs to this message, and (b) the
value of the message was not changed in transit. As the
ACK is bound to one specific message, it is not possible
to cache and resend ACKSs in another context.

o As an additional precaution, we further suggest that the
authenticated encryption (AE) of the MAC-layer payload
should be modified towards an AE with associated data
(AEAD). This extends the cryptographic integrity check
to other fields, specifically the device address, frame
counter, as well as select frame header fields. If the
network will act maliciously and discard frames, evidence
will remain in the gaps of the frame counter value, which
the adversary cannot modify due to the AEAD coverage,
alerting the application server of a potential problem.
Furthermore, attacks in the network (for example between
the gateway and network server, or network server and
application server) of rerouting the frame to a wrong
frame port and thus prevent correct reception will be
futile.

E. LoRa class B attacks

Root cause for the mode-specific attacks, such as the
location spoofing or battery exhaustion, was the insufficient
protection of the beacon frames, specifically the lack of an
integrity check value (which is still the case in v1.1). As the
LoRaWAN beacon is a MAC payload claimed by the network
operator for management purposes, the proposed modification
of transitioning the PHY CRC to a MIC, as shown in figure
12, would immediately solve the problem of any malicious
beacon modifications, including all of the specific class B
attacks outlined in the last section.

It has to be remarked though that a MIC is actually a
trade-off in this model. We assume here that the NwkSKey
will not be extracted by a capable adversary with physical
access from the IoT devices, as otherwise the attacker could
create and broadcast falsified beacons using this key himself.
If the NwkSKey is shared across a large number of devices,
the exposure to a beacon attack increases, while per-device
NwkSKeys would reduce efficiency as beacons could not be
validated by more than one device. While over the last decade
major advances have been made in secure key storage on
embedded devices, this is a rather strong assumption to make,
especially if the IoT platform is widely enough deployed
to be of specific interest to the attacker. This dilemma of
bootstrapping the secure channel is also faced by protocols
such as 802.11 and its latest additions such as 802.11w.

While this threat model would only compromise the security
of network management frames (the actual IoT application
data is still protected with the proposed AEAD scheme), it can
be argued that this extra effort is not worth the risk. Given this
threat model, a better solution here would be the introduction
of a cryptographic signature in place of, or in addition to,
a PHY MIC which comes at the extra cost of putting up a
public key infrastructure. This would allow a single beacon to
be cryptographically verified by all end devices, regardless of
user and application provider.

FE. New Key Hierarchies

One of the most profound changes that was introduced in
the specification 1.1 is the key derivation and application scope
of key material. As described above, v.1.0.2 basically relied on
two types of keys, the NwkSKey to perform an integrity check
up to the network server and AppSKey for encrypting the
payload until the application server. In OTAA of the original
specification, both these keys were derived from a single root
key.

In OTAA of LoRaWAN 1.1, the logical separation of
network and application operator is also considered in the
key derivation. Now there are two root keys, the NwkKey
and an AppKey which are implanted into the device before
delivery. While it is the sole purpose of the AppKey now
to derive the encryption key used between the device and
the application server, the NwkKey is now used to derive 3
session keys, which provide the necessary key material for the
purpose of network communication and management on the
wireless interface. Two of these session keys, FNwkSIntKey
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Fig. 13. Attack Tree: requirements and results of the vulnerabilities presented in this paper.

and SNwkSIntKey are used for MIC computation. SNwkSIn-
tKey computes a MIC on transmissions from the network
to the device. For uplink messages, both FNwkSIntKey and
SNwkSIntKey are used in combination, which allows a scope
limitation on what may be verified by a network operator
where the device is currently roaming. MAC commands are
now also protected by a new session key NwkSEncKey.

The split in scope is also introduced for counters. Instead of
maintaining only two counter values for the state of the uplink
and download channel, specification 1.1 also here separates
out application traffic from management traffic. Uplink frames
are still counted by FCntUp, in case of download messages
a different counter is applied depending on the origin of
the transmission. Messages from the application server are
counted by the value AFCntDown, while MAC frames are
kept in the value NFCntDown. The current state of confirmed
messages is now also kept, and reported during uplink frames
by the sensor in the ConfFCnt counter.

VI. CONCLUSION

LoRa is a proprietary spread-spectrum modulation scheme
for the Internet-of-Things (IoT) that has been gaining pop-
ularity fast in recent years. It promises long-range commu-
nication at low energy consumption, thereby providing an
ideal use case of scattered deployments operating for a long
time on battery power. The LoRaWAN protocol is a MAC-
layer protocol for LoRa, which provides the communication
infrastructure and interfaces for gateway-sensor topologies,
node coordination, and medium access. As LoRaWAN is a
fairly novel protocol, its level of security has not yet been
rigorously studied in the academic literature.

In this paper, we have presented the standardized security
features of LoRaWAN v1.0.2 and provided an analysis on
the effectiveness of the security mechanisms in place in an
adversarial scenario. We have found five noteworthy weak-
nesses that can compromise the confidentiality, integrity and
availability of a LoRaWAN deployment; these attacks are
depicted in the attack tree shown in figure 13:

« First, the use of the message counter value in the AES-
CTR construction can lead to a key stream reuse. Ac-
cording to the specification, this counter is monotonically
increasing and will thus overflow, and must reset after
power up. Combined with the lack of rekeying in these
events, this will allow an adversary predictions about the
message plaintext. To realize such an attack, the attacker
should have basic knowledge with respect to message
type and format and should be able to collect messages
with the same key stream. Moreover, if the attacker is able
to reset ABP-activated end devices, this could increase
the probability for messages to be decrypted correctly.

e Second, as the acknowledgement mechanism is insuffi-
ciently bound to the uplink messages, an adversary may
withhold ACKs and use them to selectively acknowledge
messages that actually had not been delivered. This attack
requires a gateway compromise or an adversary with the
capability to selectively collide messages on the air. To
execute this type of attack, the attacker should be able to
control a gateway.

o Third, in class B networks, the beacon mechanism with
which nodes are synchronized and woken up for down-
stream messages is not cryptographically protected. This
allows an adversary to let sensors believe they are mobile,
and thus exhaust their battery.



o Fourth, by caching old messages and replaying them
within the accepted counter gap window, a selective
denial-of-service attack may be launched against specific
nodes. This DoS vector is actually the backlash from the
windowing mechanism preventing out-of-order frames in
combination with a lacking MIC on the MAC header.
For this attack, an attacker should be able to capture and
resend a message whose session keys and DevAddr are
the same as those of the victim’s end device.

« Fifth, as the integrity check in the current LoRaWAN
protocol is terminated too early at the network server,
transmissions between the infrastructure operator and IoT
application provider may be selectively altered if no other
security measures are protecting that link.

In this paper, we have proposed a number of countermea-

sures and changes to the LoRaWAN protocol which will render

all

of these attack vectors harmless, many of which can be

implemented with minimal changes to the LoRa ecosystem.
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