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Abstract— To compromise a computer, it is first necessary

to discover which hosts are active and which services they

run. This reconnaissance is typically accomplished through port

scanning. Defense systems monitor for these unsolicited packets

and raise an alarm if a predefined threshold is exceeded. To

remain undetected, adversaries can either slow down the scan,

and/or distribute it over multiple hosts. With each source below

the threshold, the combination of all may still complete the scan

efficiently. It is especially this group that is of concern: with

enough resources and knowledge to execute such a coordinated

activity, they will pose a more potent threat than the noisy

“script kiddie”. Correlating which out of 4 billion IPs potentially

collaborate is however a challenging task, hence today’s systems

do not consider coordination beyond basic subnet aggregation.

In this paper, we propose a method to identify and fingerprint

distributed scanners based on commonalities in header fields,

which are an artifact of the way fast port scanning software

is built. We demonstrate that this method can effectively locate

groups, and based on the monitoring logs we report on a number

of new groups and tools, which have previously not been reported

in the academic literature.

Fingerprints generated can ultimately be used as Indicators of

Compromise to detect and mitigate scanning behavior in order

to deny adversaries the possibility to learn about weaknesses of

a system.

I. INTRODUCTION

Port scanning is an important technique that serves many
purposes. While there are benign uses for this type of scanning,
such as penetration testing, in which the security of a system
or organization is tested, there are also malicious uses. Adver-
saries are employing it to scan the Internet looking for active
systems and which services these systems run, information
that could be used for a subsequent exploitation of the host.

Intrusion detection systems (IDS) or firewalls typically
monitor for these unsolicited incoming packets. If the number
of packets sent by a particular source IP exceeds a predefined
threshold, an alarm is raised. As it is in most application
scenarios impractical to set this threshold to zero due to
the prevalence of IP address spoofing and thus unsolicited
backscatter, there exists a small margin that adversaries could
exploit for their activities. First, an attacker could limit the
scanning rate to remain beneath some assumed threshold,
which would mean that the scan takes a large timespan to

complete. Second, as IDSes or firewalls would normally do
their bookkeeping at the level of IP addresses, an advanced
adversary could split up the scan and run it simultaneously
from a large number of origins, each testing only a portion of
the targeted addresses. Given enough source hosts in combi-
nation with a slow enough scanning speed, the adverary could
systematically collect the required data without triggering an
alarm. Evidently, it is these adversaries the defender should be
most worried about: with enough patience and equipped with
sufficient knowledge and resources to deploy and maintain
such a coordinated scanning activity, they will most likely pose
a more significant threat that the prototypical “script kiddie”
who is sending a lot of probing traffic from a single origin at
a fast rate and is subsequently detected by an IDS or firewall.

Detecting such distributed, coordinated scanning activity is
a computationally challenging task for two reasons: first, the
indicators for the activity are of such low volume that the scan
disappears in the background noise of Internet backscatter [1].
Second, as an unknown number out of the 4 billion total IPv4
addresses could be part of such a coordinated action, the target
and procedure of the scan is unknown to the defender, and the
targeted systems may or may not contain some overlap, too
many candidate solutions exists to be meaningfully explored.
As a result, today’s defenses do not consider distributed port
scanning beyond basic subnet distribution, where origins are
located in the same class C (or /24) network.

In this paper, we pursue an alternative approach to the
problem of detecting distributed port scans. Instead of iden-
tifying hosts out of the gigantic pool of all IP addresses and
incoming packets that complement each other to a plausible
degree, we leverage the fact that the adversary will need to
exploit the economies of scale and likely deploy the same or
a similar tool across all hosts participating in the scan. As high
performance scanners no longer maintain a local state of the
scan but recognize returning probes by embedding identifying
information into the packet itself (as we will discuss in more
detail in section III), we can leverage the fact that packets sent
by identical software and collaborating hosts will have data
embedded in exactly the same places, encoded using the same
algorithm, even though we do not know which algorithm and



data it actually is. We can test for these commonalities using
basic boolean logic in quadratic runtime, which makes the
identification and correlation of collaborating hosts feasible.

This paper makes two main contributions:
• We propose a new technique to find identical port scan

tools and collaborating hosts based on the embedding of
information in scan probes. We show that the method
is very resilient to noise and able to find coordinated
systems well below the Internet backscatter noise floor.

• We demonstrate the feasibility of the approach based on
the port scanning activity directed against a large orga-
nizational network. Besides the identification of common
port scan software, we also discover several new tools
previously unknown in the literature.

The remainder of this paper is structured as follows: Section
II summarizes previous work in the discovery of coordinated
scanners, section III provides a brief introduction into the
concept of port scanning and the way high performance port
scanners are built. Based on these universal designs, section IV
introduces the available angles by which distributed, stateless
port scanners can be detected. Section V describes the dataset
and evaluation methodology, while section VI evaluates the
performance of the presented approach. Section VII presents
the results from an analysis of reconnaissance traffic against a
large organization, and reveals new and previously unknown
port scan tools. Section VIII summarizes the results.

II. RELATED WORK

While several previous studies have reported the existence
of sophisticated, distributed adversaries [2], [3], only a small
body of literature has been developed towards the identifica-
tion of collaborating hosts. As discussed in the introduction,
the identification and extraction of k coordinated systems from
a set of n elements is basically equivalent to the computation
of the binomial coefficient in combinatorics (with the addition
that all packets from two source IP addresses need to be
checked for overlap), which does not scale advanteously.
Previous literature thus has either focused on small scale eval-
uations with prefiltered data, or relied on several assumptions
on the organization and behavior of distributed scanners to
make the problem scalable.

One of the approaches to detect distributed scanners is
proposed by Gates [4] and uses set cover to find relations
between IP addresses. The set cover problem is a NP-complete
problem [5], therefore using this algorithm is infeasible for
high volumes of data. Also, the limitations of the method
proposed by Gates include that only groups that hit 95%
of a particular target IP range can be detected, which can
be circumvented by adversaries. Robertson et al. [6] detect
distributed scans as long as the IP addresses participating
in these scans are located in the same subnet. It makes the
assumption that the IP addresses are related when they are
close together. This assumption might hold in a number of
cases like scanning services such as Shodan which scan from
specific ranges, but it is not always valid. Previous work
shows that there are large distributed groups whose scans

Client Server
TCP SYN

TCP SYN+ACK

Client Server
TCP SYN

TCP RST

Open Port Closed Port

TCP ACK

Fig. 1: The response sent to a TCP SYN frame reveals to a
client whether a server port is open or closed.

are not originating from the same subnet [2], [3]. In the
work by Yegneswaran, Barford and Ullrich [7], the authors
identify coordinated behavior by looking at destination ports
and destination IP addresses, which they use to identify slow
scanning malware. They find that a large amount of scans
is coordinated in nature, meaning that IP addresses elicit the
same behavior. The authors evaluate destination ports and IP
addresses present in the packet headers, discarding other fields.

As we will demonstrate in section VI, the above methods
fall short to reliably detect collaborative port scans in two
respects. First, when operating at Internet scale and inside
a large organization, the volume of incoming data cannot
be analyzed for the degree of complimentarity, nor is there
usually a prefiltering available as required for Gates’ set
cover solution [4]. Second, the results by [2] highlight that
adversaries typically do not respect the boundaries of subnets
but rather distribute their activities across network ranges,
ISPs and country boundaries. This reduces the applicability
of heuristics, which trade the computational complexity with
the assumption of logical proximity as for example [6]. As
the fundamental algorithmic problem cannot be tackled, we
will demonstrate in the following how the problem may be
redefined, and this alternative problem does allow a computa-
tionally feasible angle for detecting collaborating hosts.

III. PORT SCANNING

In order to determine whether a remote host runs an
application behind a particular port, adversaries typically rely
on port scanning as the first step in the reconnaissance
process. Transport layer protocols such as TCP and UDP react
differently, depending whether a system port is opened or not
by an application. As shown in figure 1, the specification of
the TCP protocol [9] mandates that a connection request from
a client, a TCP SYN, should be answered with a TCP packet in
which the SYN+ACK flags are set. A client would then close
the initial handshake of the TCP protocol through a final TCP
ACK, after which both client and server have established and
synchronized the state of a duplex connection between them.
In case the initial TCP SYN reaches a closed port, RFC793
[9] mandates the server to respond with a TCP RST packet,
which instructs the client to drop the connection request as
well as remove and reset its internal state. As a port scanner
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Fig. 2: IPv4 and TCP headers as defined in the RFCs. Fields marked in yellow show fields that can be modified, but are not
present in the response of the packet.

is not interested in actually negotiating a connection with a
server but only wants to ascertain whether there is a service
present and active behind a given port, it would only sent an
initial TCP SYN and not complete the handshake further.

When performing a survey of active hosts and open ports,
a port scanning application would successively send out TCP
SYN packets to all targeted destination addresses at one or
more ports, and log from which remote hosts it has received
a response. During this scan, the application internally has
to maintain some record about the scan packets in flight
for two reasons: first, whenever a host is connected to the
open Internet, almost immediately backscatter will trickle in,
which is the result of continuously running DDoS attacks
and IP address spoofing. If the scanner does not know to
which destinations it had earlier sent TCP SYN requests, the
application would misinterpret incoming backscattered TCP
SYN+ACKs as responses to its scan. Second, if either the TCP
SYN or the response has been lost, port scanning tools such
as the commonly used nmap will resend the probe two more
times before determining a destination to be unresponsive.

Clearly, maintenance of a log of open, unanswered TCP
SYNs requires a significant bookkeeping effort, especially if
the port scanner operates at very high speed. While long
established tools such as nmap only progress slowly in such a
scan, recent modern developments such as masscan or zmap
are able to scan the entire IPv4 address space in less than
one hour [10], [11]. This is made possible at the expense of
foregoing re-transmits for timed-out responses, but these high
performance scanners also no longer record where they have
sent packets to and thereby avoid any overhead with storing,
updating and removing records during the scan.

To separate responses from backscatter, these tools embed
information into the outgoing probe that is preserved on the
way back. As an example, the server’s acknowledgement
of the client’s initial TCP SYN packet contains the 32 bit
initial sequence number (ISN) used in the client’s request
(incremented by one). If the port scanner would choose a
32 bit random number at the beginning of the scan and use
this fixed value for each scan probe, the responses could be
reliably separated from incoming traffic as backscatter would
only have a chance of 1 in 4 billion to use the expected
random value as ISN, while the scanner has reduced the entire

management storage requirement to just 4 bytes. Ghiette,
Blenn and Doerr [12] report on the usage of such random
session keys, but also find combinations of connection meta
data as source/destination IP addresses or port numbers be
used for ISN generation in common port scanning tools.

IV. METHODOLOGY

In the previous section, we have discussed how modern
port scanning tools embed information in outgoing probes to
enable a low cost re-identification of responses in incoming
network traffic. While the tools analyzed by [12] all use one
type of such ISN generation (which then allows these tools
to be fingerprinted), there might be other tools unknown and
unavailable to the general public, as they are custom devel-
oped by (advanced) adversaries to avoid such signature-based
detection. Indeed, [13] finds in the case of SSH bruteforcing
the existence of dozens of customized brute forcing software,
many of them exclusively in use by a limited number of
related hosts spread around the world. Aside from identifying
the presence of slow, distributed scanners, we would also
like to identify the existence of such customized tools, as
they also indicate sophisticated adversarial knowledge and the
availability of resources.

A. Detecting shared header patterns

As we have seen above, if commonly available and custom-
built port scanners embed some state information into the
scan probe, this could only be meaningfully done in header
information that is (a) not modified by intermediate routers,
(b) either entirely preserved in the return packet or modified
in a predictable way such as the ISN, and (c) the modification
does not break the functioning of the protocol. When we look
at the header fields of the IPv4 and TCP protocols as depicted
in figure 2, we directly see that only few of the header fields
could be arbitrarily changed. Modifications to fields indicated
in red would break the correct working of IPv4 or TCP, for
example a modification of the IPv4 version field would mean
the packet is no longer correctly recognized and parsed by the
destination. Other fields such as the TOS, TTL or IP ID only
carry meaning in one direction and are not copied over into
the return, while values such as the IPv4 header checksum are
modified along the way. These are indicated in yellow.



From the IPv4 header, only the data placed into the source
and destination IP address fields are available in the return,
both of which could be used as input to an identification
scheme. Here only the source IP address could be used to
a limited extent to embed some information if the adversary
has control over an address range or may monitor network
traffic. In the TCP header, only data placed in the source and
destination port as well as sequence number is returned. While
like in case of the destination IP address a modification of the
destination port is meaningless, as the adversary wants to scan
this particular destination, these fields could be used as input
information to an identification scheme, whose input could
only be placed into either source port or sequence number.

The possible fingerprint FP could thus be an arbitrary
combination of source and destination address and port as well
as a possible secret value, which is placed in either source
address, source port or TCP sequence number. As the header
fields for IP address and TCP sequence number are 32 bits
while port numbers are only 16 bits in length, information
could furthermore be arbitrarily shifted by an unknown offset
oi, for which we arrive at the general formula

FP = random� (srcIP ⌧ o1)� (dstIP ⌧ o2)

� (srcPort ⌧ o3)� (dstPort ⌧ o4).

Note that this formula is general enough to also capture
cases where information is not used as part of the fingerprint.
Consider the case of embedding a 32-bit FP into the ISN,
with the only information being included are the dstIP and
the dstPort as the most significant bits. This can be realized
through random = 0x00, o1 > 32 and o3 > 32 which will
eliminate the other values from the computation. To discover
and identify this tool, we need to learn the values of random,
o1 through o4 from incoming scan data.

In order to solve this equation and find those values for
which the fingerprint FP matches a header embedded in
the packet, 32 comparisons per data field are necessary, or
a total of 131,072 comparisons per packet. While this is
computationally infeasible to do per incoming packet, at least
in software, we can test for the presence of such an algorithmic
generation by comparing pairs of packets directed to different
destination IP addresses or ports.

Let us suppose from now on that the fingerprint has been
embedded as the initial sequence number in the TCP SYN
packet, and we have obtained two sequence numbers seqA
and seqB from the packets sent from the same source towards
host A and B, targeting the same port. When we combine
both through an XOR relationship,

seqA � seqB = ((random� (srcIP ⌧ o1)� (A ⌧ o2)

� (srcPortA ⌧ o3)� (dstPort ⌧ o4))

� ((random� (srcIP ⌧ o1)� (B ⌧ o2)

� (srcPortA ⌧ o3)� (dstPort ⌧ o4))

= (A ⌧ o2)� (B ⌧ o2)� (srcPortA ⌧ o3)

� (srcPortB ⌧ o3)

all identical variables are eliminated, as (A� r)� (B � r) =
(A � B). This will conveniently remove unguessable items
such as a random value or session key as well as remove any
identical fields between probes such source IP or destination
ports, thereby leaving only the remaining items to be tested. If
the port scan is a horizontal scan, 35,937 comparisons are left
over, as the destination port will fall out in the elimination. By
picking packets hitting the same destination IP or originating
from the same source, in which case these values fall out in the
XOR operation, the number of equations drops to only 1089.
This can be further simplified, by mathematically checking
when there is only one field possibly left in the equation. If
we were to mix in a value such as the source port with a
particular offset, numerically this will mean that the value is
multiplied by a power of 2 before added to the number. Thus,
if we divide the result of a two-packet XOR by the actual
value a field that we suspect was included in the equation, for
example the source port,

ô4 = log2(
seqA � seqB

srcPortA � srcPortB
)

the resulting guess of ô4 should also result in the same integer.
This reduces the effort per packet pair further, but can only
be performed after eliminating the other fields, reducing the
search space of the equation. 33 steps are needed to check one
field, and for every step the last field is also mathematically
checked. Checking all fields will therefore take 66 equations
when strategically picking which packets to compare.

B. Iterative filtering
Not all scanners provide these clear patterns, and sophisti-

cated scanners that do not have these relationships are hard to
cluster together in a large pool of data. The data points that are
generated by slow distributed scanners are hidden significantly
beneath the noise floor of other scanning activity. In order to
find and detect stealthy actors, we adopt the iterative filtering
approach described in [14], in which events are filtered out to
show events that were not known at first.

If an adversary was to perform a distributed scan from
multiple machines, it would be inefficient to create a new
program for every device, as opposed to distribute the same
tool over all machines. The behavior on all these devices would
thus be the same, all following the rules pre-programmed in
the tool. By looking at relations in packets originating from a
source, and building a behavioral model from these packets,
one would be able to group these IP addresses together on the
tools that are used.

We define packet relations by commonly used values in the
header, as well as behavioral traits such as re-transmissions
and randomization frequency. The header values that can be
set by the adversary without breaking the TCP protocol are the
fields marked white and yellow in figure 2, which are therefore
the fields we look at. Randomization and re-transmissions of
these header values has been taken into account through the
addition of a correlation between the number of distinct header
values with regards to the total number of packets. With these
fields, a profile is built per source IP.



From the profiles, pair-wise correlation scores are calcu-
lated, which are used to identify whether hosts are using
the same tooling to scan the internet. After a particular set
of hosts that collaborate and use a specific tool has been
identified, this group is removed from the data body and
the analysis is repeated. With “strong” signals and heavy
senders removed, relationships between collaborating but less
active hosts become then visible in the filtered data which
would otherwise be overshadowed by the strong correlations.
In essence, this amplifies the weak signals hidden in the noise
floor. Additionally, by leveraging the fact that specific tools are
already identified, we can safely remove these from the dataset
without losing information about other relationships. As they
are removed, new groups become visible that previously
correlated heavily with other groups that are now removed.
We consecutively loop until no new scanning groups can be
found in the data or the identified correlations cross a threshold
indicating no distinguishability from randomness.

To perform this clustering we use SLPA, a graph based
clustering method [15]. The graph is built by creating a node
for every scanning IP address, and edges are added only if the
pair-wise correlation scores between two nodes exceeds the
threshold of the current step of the clustering algorithm. Fig-
ure 3 shows this process, where highly connected subgraphs
are extracted as clusters from the dataset in iterative steps.

In addition to the above described detection methodologies,
we identify time patterns. Clear time patterns are used to
indicate collaboration, where hosts come up and go down in
the same time period. To identify these patterns, we have split
the dataset in sliding windows of 20 minutes, for which we
will consider scanners to have started or stopped in the same
time period.

V. DATA COLLECTION

In order to evaluate the detection capability of the presented
approach and discover tooling used in the wild by adversaries,
we utilize data from a network telescope. This telescope
contains three partially populated /16 networks and collects in-
coming packets for approximately 65,000 unused IP addresses
[1]. As these IP addresses are unused, the trace is thus devoid
of any user data (which conveniently eliminates potential
privacy concerns), but only contains Internet backscatter and
adversarial activity directed against the ranges such as port
scans. As network telescopes contain a large number of IP
addresses but do not actively respond to incoming probes, they
are excellently suited to detect horizontal scanners, which [16]
reports is the predominant scanning mode in today’s Internet.

While the telescope has been in operation for more than
three years, this study is based on data collected over a
timespan of two months in 2018. This timeframe accounts for
approximately 864 GB of traffic and a total of over 6.5 billion
packets. Between the two major transport layer protocols UDP
and TCP, the vast majority of port scanning traffic is directed at
TCP, which will hence be the focus of this paper. We classify
packets as probing activity based on the presence of the TCP
SYN [16], and do not include backscatter in the analysis.

(a) Pair-wise correlated graph, lines show the amount of correlation.
As many points correlate at least a little, we iteratively filter clusters
with the largest correlation score from the dataset.

(b) The same graph after removing the first high-correlating cluster,
showing different clusters previously overshadowed by the correla-
tions with the filtered group.

Fig. 3: Visual representation of proposed clustering method.

VI. EVALUATION

In this section, we evaluate the performance of our proposed
methodology to detect distributed scanners that deliberately act
to avoid detection. As there is no prior available labeled data
set, our evaluation strategy will hence be three-fold:

• First, we will establish several dimensions in which a
scanner can hide and create concrete scenarios for the
different hiding dimensions.

• Second, we create artificial groups of scanners based on
the aforementioned scenarios. We implant these scanners
within the data trace collected by the network telescope,
and given this ground truth test what percentage of the
embedded scanners our method is still able to identify
given various degree of hiding.

• Third, we run our proposed method on the data corpus
to detect scanner tools currently in adversarial use. These
findings on which toolchains and degrees of coordination
are used in the wild are presented in section VII.

A. Degrees of stealthiness
Goal of an adversary in port scanning is to obtain a record

of the available hosts and services on the Internet in general,
or a specific remote network in particular. From our earlier
discussion and the review of previous work, we know that an
adversary will rate-limit a scanning campaign and spread out
the campaign over a number of IP addresses in an attempt
to evade detection, as current defenses such as IDS/IPSes
aggregate packets by IP addresses in particular time windows.
While one host could be assigned multiple IPs, multiple source
IPs would usually imply multiple source hosts. Multiple IPs



would in the simplest case be located in the same subnet,
or be geographically distributed and hence located at the IP
space of the single or multiple Internet service providers. In
a coordinated distributed activity, we would assume resource
reuse of the available tooling for the economies of scale as
discussed before (which would then have patterns we aim
to discover in section IV), as well as similar behavior of all
participating hosts for example somewhat synchronized start
and end times of the scan.

While all of the above would be features that a distributed,
coordinated system would exhibit, a knowledgeable advanced
adversary could deliberately set up the environment to avoid
showing these features. Therefore, we will create distributed
scanners in our evaluation dataset that use one or more of the
following five different dimensions to ‘hide’ their presence:

1) Source IP addresses: The scan can be distributed over
a large number of source IP addresses. In our tests,
we added scanning groups consisting of 1 to 1,000,000
origins. IPs can be either located in the same subnet, in
multiple subnets, or randomly placed in the IPv4 space.

2) Packet volume: The number of probes can also be lever-
aged by a scanner to remain undetected and generate
only a weak signal. We embed groups sending 10,000
down to 5 packets to our 60,000 IP addresses.

3) Header field patterns: Aside from hard coding select
header values such as ZMap’s IPID 54321 [17] and
encoding of state information in header fields as de-
scribed in [12], tools could also randomize all fields
present in the packet. This way, the scanning traffic will
ultimately be indistinguishable from normal network
traffic. Randomizing each field would mean that the
scanner has to keep track of every packet it has sent
out, in order to match them back to the scan.

4) Sequence number: As scanners can embed information
in the sequence number, the value of the sequence
number can be leveraged to find a scanning group.
Sequence numbers could be static for every packet,
generated through an equation, or totally random.

5) Subnet: One of the known detection methods is to link
IP addresses in the same subnet [6]. By distributing the
scanning activity over a number of subnets, an adversary
could evade detection. Thus, we embed scanner groups
that are located in multiple subnets in the data, with the
highest level of hiding being geographically distributed.

6) Time-based patterns: Distributed scanners may have
a coordinated on-off time, in other words are active
in the same time frame during which they generate
probes at random intervals. With additional effort, an
adversary could let the source host be active at different,
uncorrelated times, although this would waste some of
the available scanning capacity of the infrastructure as
source hosts remain idle.

7) Destination IP cover: A scanner can skip part of the des-
tination IP space in order to not be detected by methods
proposed in [4]. This means that the scanner loses some
information. In order to counter this information loss, an
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Fig. 4: Hiding evaluation, for comparison with the state of the
art, we define different hiding levels from low to high.

attacker could also opt to deliberately create an overlap
in scanned destinations. Then the algorithm will not flag
the set of IP addresses as being part of one group.

B. Method validation

From the overview of different hiding techniques discussed
above, we have created an overview of different scanning
techniques that could be used by attackers with different so-
phistication levels. As some configuration combinations would
not be meaningful, for example it is impossible to have a
single-source scanner that is highly distributed, the options
along the 7 dimensions as shown in figure 4 resulted in 3060
theoretically feasible configurations for scanner behavior.

For each viable combination, port scanning traffic is injected
randomly throughout the telescope data. This is necessary as
there is no data set available of labeled distributed slow scan-
ners, especially none where a wide array of hiding scenarios is
included. By exhaustively generating scanning groups, we can
estimate how scanning groups would have to behave in order
to remain undetected, and how well the current and proposed
methods work.

In total, our method is able to detect 2312 groups out of
the 3060 groups that were added to the data. These 2313
successful detections are the instances where all of the source
IP addresses were exactly identified by our algorithm and
matched in one cluster. We can however argue whether an
exact match is the best choice for both precision and recall,
or whether we would be rather interested to evaluate whether
we have better recall with some loss in precision. In other
words, we could choose to accept some false positives in
a cluster if this would significantly increase the likelihood
that we identified all malicious scanning IPs in the data set.
From a defense perspective, correctness of the total cluster
might be less important than finding anomalies in the first
place. If we go beyond evaluating only the groups that had
perfect precision and allow for groups in which at least 95%
has been identified in a cluster, we detect 2692 groups out
of the 3060 combinations. This means with up to 5% of
noise, we detect 87.97% of the added groups. While 5% noise
produces a 16.4% increase in the detected groups, beyond the
5% threshold the detection rate increases slower than the added
noise. Therefore, we will take a 5% noise limit as the second



TABLE I: Comparison of the proposed method and the state
of the art.

Method Found Recall Precision

Our method (exact) 2312 75.55% 100%
Our method (5% noise) 2692 87.97% 98.14%
Subnet method 983 32.12% 100%
Destination IP 107 3.50% 100%

variant of our method, in which analysts can trade a small
amount of false positives for increased detection.

The groups that remained undetected after applying our
method are the groups that are hidden in almost every di-
mension, as well as the groups that only have 1-5 source IP
addresses and only hit a very small fraction of the telescope,
as the combined signal is so weak that the method is not
able to find a connection. As we can fingerprint groups based
on a subset of the total set of identifiers, the method allows
for the detection of groups that are attempting to hide in one
dimension. The groups randomizing almost all fields, did not
use a XOR relation, and were distributed over a large number
of different hosts sending a low amount of packets are not
found using the proposed method. While the detection method
does not directly find these highly hidden groups, parts of them
are still identified, as which we iteratively filter the data, so it
is able to find some of these hidden groups as they are distinct
in their hiding strategy.

As discussed in section II, there are two methods that can be
considered the state of the art in distributed scanner detection.
These are the method of grouping IP addresses by subnet
[6], and the detection of scanners based on the destination IP
addresses scanned [4]. The benchmark of our work is shown in
table I, which shows our method outperforms the state of the
art, with the destination IP method finding the least number
of groups. The reason for this is that the amount of data for
this comparison is sufficiently large to make the computation
of the set cover infeasible. As an approximation algorithm is
needed for the set cover problem, and there are many different
permutations of scanners that would create such a cover, this
method suffers from a large number of false positives, and
is not able to find many distinct groups. The subnet method
does find some groups, as some of the groups added to the
data were indeed located in the same subnet. However, the
method fails to detect groups in other hiding dimensions, as
the subnet method relies on subnet-based thresholds, which
are circumvented by scanners that are distributed.

As classifying the performance as a lump average over
3060 different combinations does not sufficiently reveal these
nuances and a visualization of results across 7 dimensions
is challenging, table II aggregates the results into categories
of adversarial sophistication. To simplify the presentation, we
can categorize each of the values from figure 4 in a level of
sophistication. For example, a scanner group where all of the
source IPs are consecutively placed in the same subnet would
have low sophistication, while one where the IP addresses are
randomly placed worldwide is highly advanced, and so on.

When we only consider scenarios where all variables are

TABLE II: Precision based on levels of hiding. Indices based
on figure 4

Our method Subnet Dest. IP

Low hiding 100% 100% 59%
Medium hiding 100% 35% 0%
High hiding 21% 0% 0%
All high, #2 low 78% 12% 0%
All high, #5 low 26% 76% 0%
All high, #7 low 26% 0% 67%
All high, #7 medium 26% 0% 0%
All high, #4 medium 100% 0% 0%

TABLE III: Tools found using XOR-analysis, filtered to groups
according to behavior by iterative filtering. Tool name is
chosen as a unique identifier of the group.

Name Fields in equation Ports #IP addresses

Unicorn [13] key, srcIP, srcPort, dstPort 3389 246
Mirai-like [18] dstIP 5555 6028
Dot zero Shifted dstIP 130, 2434, 47

131, 2435
IPID dstIP, IPID, dstPort 22 153
All key, dstIP, dstPort, srcPort 22 25
Dst sess. key key, dstIP 80, 443 34
Dst IP & ports dstIP, dstPort, srcPort 21 19
Src IP & ports srcIP, dstPort, srcPort 22 28

unsophisticated, both the proposed and the subnet method
accomplish a perfect result and also a set cover accomplishes
59% precision. If all configuration options have medium
sophistication, our method continues to identify all embedded
groups while previous work drops to 35% and 0% precision.
This drop can be entirely explained based on the algorithms
used: the subnet-based method makes for example the strong
assumption that scanners originate from the same subnet, as
soon as scanner vary along this dimension nearly two thirds of
the embedded scanner groups go by unnoticed, as the subnet-
based method is only applicable in one third of the groups.
The method is also able to detect single IP addresses based
on a threshold, grouping multiple of these IP addresses across
different subnets together is however not done by this method.

Our proposed methodology reaches its limit as soon as there
is almost no exploitable commonality between the scan probes
and between the header values. The residual 21% detection
is accomplished due to the algorithm clustering these source
IP addresses together because the only thing they have in
common is that they have no clearly visible relationship.
Having no commonality with others is also a commonality
by itself, even though a weak one.

Table II shows that in order to thwart our method, adver-
saries have to reach a high level of sophistication in most
dimensions. For example, from table II it can be seen that
our method is able to detect the cases in which the scanner is
hidden in every dimension, except for dimension #4. By not
making strong assumptions on the form of a scan, it becomes
harder for an attacker to evade this detection. We can therefore
conclude that our method is successful in detecting different
levels of hiding technique.



VII. SCANNERS IN THE WILD

In the previous section, we have validated our proposed
methodology to have excellent precision (98.1 - 100%) and
high recall (75.5 - 87.9%), in other words while we will
miss some slow groups, we will be able to reliably identify
those within our detection capability. In this section, we will
report on both the tooling and coordinated scanning groups
discovered from the data obtained when applying the proposed
methodology on scan traffic directed against the organization.

A. Tools
The two month trace revealed a total of eight tools that used

combinations of the meta data within the header fields of the
scan probe. All eight fingerprints embedded the scanning data
within the sequence number field, while no other instances of
an algorithmic generation of for example source port or source
IP were observed. This is not surprising per se, as the ISN
value can be flexibly set without imposing any requirement
on the scanning setup: a scanner using a dynamically derived
source port could not open a port but would have to listen
in promiscuous mode and would risk a collision with other
network applications running on the same host, while an
encoding in the source IP address requires the adversary to
listen to a large block of IP addresses.

Table III lists the discovered implementations, together with
the fields used as part of the ISN generating fingerprint. As
we see, all tooling encodes the IP address into the sequence
number, which as a 32 bit value thus provides a very low
likelihood for the scanner to accept incoming data by mistake.
From the eight tool chains discovered, only the first two
fingerprints can be matched with that of a known tool, Unicorn
and Mirai, while for the remaining ones we have not been able
to find any record in the existing academic literature or port
scanner implementations matching these fingerprints.

B. Scanners
In total, we identified 1249 clusters of IP addresses in

the data that employ the above tooling, but may be grouped
into separate entities as their concrete behaviors differ, out
of which we have manually inspected 50 of these groups. In
the following, we will briefly outline three of these groups,
their volume and a few behavioral characteristics. We used
characteristics of the groups to provide them with a name.

1) Mirai-like: Several identified clusters in the data set
used the destination IP directly as the sequence number in the
probing packet, so that the return could be trivially identified
by the scanner. As this is the same strategy Mirai used to
pick its sequence numbers, we have named it as such. The
IP addresses in this group send at most 20 packets to the
65,000 telescope IP addresses in a 60 minutes interval. This
rate of sending packets would stay under the radar of any
currently used IDS system we are aware of. Furthermore,
the complete global distribution would let it go undetected
by current scanner identification methods described in section
II. By leveraging our detection methodology, a distributed
scanning net such as Mirai could be identified before it is

used for malicious purposes, and we could sooner be aware
that there are anomalies in scanning traffic.

2) IPID group: In addition to the destination IP and des-
tination port, this group uses the IP identification number in
the XOR equation of the sequence number, ISN = dstIP �
IPID � dstPort. This behavior is rather curious, as the IPID
only has meaning in one direction and is not copied back into
the return packet. In this case, the scanner most likely sets the
outgoing IPID in a predictable way, as it will not be possible
to identify the value on return of the packet, hence leading to
our naming. Based on the behavioral model created for this
group it became apparent that the IP identification number
seems not be random, but rather is identical for every packet
that is sent to the same destination IP and port, regardless of
which source it originates from.

3) Dot zero group: The dot zero group is one of the stranger
groups that have been uncovered. This group targets only IP
addresses where the last byte is zero. Why only these IP
addresses are scanned, and not other IP addresses is currently
not known, especially as this is the network address in class C
networks. Further study in what can be achieved by scanning
these particular kinds of IP addresses should be done. It might
be targeting Internet gateways for example, but it is unclear
what this would accomplish. The group exhibits an interesting
feature that was discovered by our proposed method in the
iterative filtering step, in that the source port is constant for
all the hosts in the same subnet. Take for example two IP
addresses in the same subnet: a.b.c.100 and a.b.c.200. These
IP addresses will use the same source port. An IP address in a
different subnet c.b.a.100 will use a different source port, but
also the same source port as any IP address in its own subnet.

VIII. CONCLUSION

In this work, we proposed a method to identify custom
port scan tooling and coordinated scanners based on artifacts
contained in the header fields. Modern port scan software no
longer stores the state and the progression of network scans to
avoid administrative bookkeeping on the local host, but rather
embeds the data into header fields that are preserved when the
target replies. This allows the scanner to differentiate between
scan responses and unrelated traffic with minimal overhead.

To detect these tools and ultimately distributed slow scan-
ners, we match all connection meta data in a pattern analysis,
which becomes scalable as we match packets sent by different
scanners to link those that rely on the same strategy. We
demonstrate that the proposed methodology is able to detect
scanners with various levels of stealthiness. When running the
system on scan traffic directed against three class B networks,
we were able to identify eight distinct tools based on these
relations. The scanners identified seemed to be wide-spread,
and was employed by a total of 1249 clusters of source
addresses. Groups made deliberate efforts to trawl through the
monitored networks at a slow enough rate to be not detectable
by existing IDS/IPS tools, and violate the assumptions in
previously proposed slow scan detection algorithms.



REFERENCES
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