
Fingerprinting Tooling used for
SSH Compromisation Attempts

Vincent Ghiëtte, Harm Griffioen, and Christian Doerr
TU Delft, Cyber Threat Intelligence Lab

{v.d.h.ghiette, h.j.griffioen, c.doerr}@tudelft.nl

Abstract
In SSH brute forcing attacks, adversaries try a lot of different
username and password combinations in order to compromise
a system. As such activities are easily recognizable in log files,
sophisticated adversaries distribute brute forcing attacks over
a large number of origins. Effectively finding such distributed
campaigns proves however to be a difficult problem.

In practice, when adversaries would spread out brute-
forcing over multiple sources, they would likely reuse the
same kind of software across all of these origins to simplify
their operation and reduce cost. This means if we are able to
identify the tooling used in these attempts, we could cluster
similar tool usage into likely collaborating hosts and thus
campaigns. In this paper, we demonstrate that it is possible
to utilize cipher suites and SSH version strings to generate a
unique fingerprint for a brute-forcing tool used by the attacker.

Based on a study using a large honeynet with over 4,500
hosts, which received approximately 35 million compromi-
sation attempts over the period of one month, we are able to
identify 49 tools from the collected data, which correspond to
off-the-shelf tools, as well as custom implementations. The
method is also able to fingerprint individual versions of tools,
and by revealing mismatches between advertised and actually
implemented features detect hosts that spoof identifying in-
formation. Based on the generated fingerprints, we are able
to correlate login credentials to distinguish distributed cam-
paigns. We uncovered specific adversarial behaviors, tactics
and procedures, frequently exhibiting clear timing patterns
and tight coordination.

1 Introduction

Secure Shell (SSH) is a widely used protocol to operate ser-
vices on a remote host over a network. One of the commonly
used services of SSH is remote terminal access, which al-
lows a user to execute programs on a remote system. The
protocol authenticates a user based on a public key or an user-
name/password combination, which prohibits malicious users
to connect and exploit the host.

Hash Values

Domain Names
Netw./Host Artifacts

Tools

TTPs

IP Addresses
D

iffi
cu

lty
 fo

r A
dv

er
sa

ry
 to

 C
ha

ng
e

D
iffi

cu
lty

 fo
r D

ef
en

de
r t

o
D

et
ec

t

Figure 1: While basic Indicators of Compromise (IoC) are
easy to gather and distribute, they are trivially changed by an
adversary. For effective, more persistent detection it is nec-
essary to assemble threat intelligence that covers behavioral
features of the attacker. [3]

Due to the extensive use of the protocol, SSH is a popular
target in brute forcing attacks. While system administrators
are able to change the usernames and passwords used by the
device, a lot of devices are still configured to use standard
username and password combinations. As many devices are
left with default configurations, simply trying a list of com-
mon username and password combinations proves effective
enough for attackers to massively scan for, and attack SSH
devices using this method.

While unsophisticated attackers would run through an ex-
tensive username/password candidate list in order to gain ac-
cess, such behavior would be quickly visible in log files, and
source addresses with repeated failed attempts are routinely
blocked by intrusion detection systems (IDS) or monitoring
systems such as fail2ban. Advanced adversaries would thus
split the brute forcing out over multiple hosts, but in order to
simplify the administration, usage and lower the cost, they
would typically run a similar software across systems.

Current detection revolves mostly around simple indicators
to detect malicious behavior. Virus scanners or intrusion de-
tection systems for example rely on signatures and hashes to
identify malicious activity, and also the IP addresses of mali-
cious hosts scanning and brute forcing logins is enumerated
and distributed in IP block lists. As explained by the so-called
“pyramid of pain” [3] depicted in figure 1, these indicators
are however trivially changed for an adversary, for example
by simply recompiling a malware or moving the activity to
a newly compromised host or proxy. In result, such informa-
tion is unsuited to stop adversaries for long and at a broader
scale. An alternative is the detection based on complex indi-
cators, such as the systems or tools used or the tactics in a
compromise, as they are much more difficult and costly for an
adversary to change. If we can detect a particular software or
modus operandi used for brute forcing SSH, we can reliably
identify malicious activity, regardless of the IP address it is
coming from and whether this address was participating in
such activities before.

In this paper, we introduce methods for fingerprinting soft-
ware stacks and tools used in SSH connections. This will help
to study and follow the activities of adversaries, as an attacker
will most likely distribute the same tool over a number of
hosts to leverage the economies of scale. By detecting attacks
by their used tools, attackers will have to change their soft-
ware between campaigns, and even between different hosts.
This greatly increases the cost for attackers, and can price
them out of the system.

Our approach extracts session negotiation information such
as the list and ordering of key exchange algorithms, cipher
suites, or compression algorithms which are exchanged in
clear text during the SSH session initiation. This means that
using this approach, we do not need to interfere with the con-
nection itself, meaning that the method is completely passive,
and as the fingerprint is derived from the SSH handshake, we
are able to identify brute forcing attempts even before the first
password is sent to the system.

This paper makes the following contributions:

• We introduce the concept of fingerprinting to the SSH
protocol and demonstrate based on a large corpus of
35 million brute forcing attempts that fingerprinting is
suited to identify tools that are used by adversaries. By
detecting attacks on this level, the cost for adversaries
rises as they need to build new tools for every campaign.

• We deploy the technique to 4,500 honeypots with the aim
of gaining cyber threat intelligence about the practices
of adversaries. We empirically show the presence of
49 different tools, and show that a cluster of hosts relies
on the same toolchains. We furthermore find evidence
of large, distributed campaigns of collaborating hosts.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the state of the art in fingerprinting and SSH

brute forcing. Section 3 provides an overview of the SSH
protocol and components necessary to introduce the proposed
method. Section 4 explains the fingerprinting methodology.
Section 5 provides details about the design and scale of our
honeynet. The evaluation of our proposed method is presented
in Section 6. Using our method, we find a large number of ac-
tors, each featuring different strategies, tactics and resources.
Finally, Section 7 summarizes and concludes our work.

2 Related Work

As stated in the previous section, a sustainable cyber defense
best focuses not on identifiers of specific malicious instances,
but on characteristics that are constant over multiple instances.
One way of generating these characteristics is to fingerprint
the tools used by attackers. Our main claim in this paper
is that we can extract fingerprints from the SSH connection
negotiation that can be used to distinguish different tools. Two
lines of related work are important to class the proposed work,
first previous research on fingerprinting protocols, and second
previous research in brute force detection.

First, while fingerprinting has not been done in SSH, differ-
ences in cipher suite strings have been used in the SSL/TLS
protocol suite to identify server or client software. To fin-
gerprint clients, Husak et al. [9] were able to infer the used
client application based on the cipher suites that were used
in the connection. The authors found that many applications
support different cipher suites for establishing a connection,
and some applications also send the cipher suites in a dif-
ferent order. Therefore, the authors were able to fingerprint
client applications using only the cipher suites presented in
the handshake. Durumeric et al. [4] applied the analysis of
advertised clients (through the HTTP User-Agent) and imple-
mented SSL/TLS handshakes to detect the nature of the client
connecting, and thereby identify middleboxes that intercepted
the TLS connection between client and server. Fingerprinting
specific implementations is also possible by detecting specific
patterns in which header fields [5] or packet payloads [6] are
set and encapsulated in scan and attack traffic.

Fingerprinting the traffic sent through encrypted channels
has been done by Sun et al. [18]. Their algorithm is able to
identify which webpages are visited from the amount of traffic
sent during the page load. Similar research by Korczynski
et al. [11] uses Markov chains to generate fingerprints for
different services based on the SSL session. Their research
shows that they are able to fingerprint certain applications
with a high confidence level. In the case of SSL, research has
focused on fingerprinting clients and client behavior. Our SSH
fingerprinting method leverages the same intuitions, but is
tailored towards fingerprinting adversaries that are attempting
to compromise a system.

Second, although there exists no prior work in the literature
for fingerprinting SSH endpoints, a selection of previous stud-
ies have developed methods for detecting SSH brute forcers.

Hellemons et al. [7] have proposed an intrusion detection
system method for detecting SSH intrusions using netflows.
Similarly, Najafabadi et al. [14] propose a machine learn-
ing algorithm to detect brute force attacks in netflow data.
The authors have validated their results on the SSH proto-
col and found that machine learning techniques perform well
for detecting these brute force attacks. Nicomette et al. [15]
clustered adversaries together based on attempted passwords.
The authors find relationships between dictionaries, but at
the same time notice that few dictionaries are shared across
attackers. All these works focus on the detection of brute
forcing attacks at the moment that the system is already under
attack, however we show in the following that it is possible
to obtain much information about the incoming request dur-
ing the connection negotiation itself and before the password
prompt is shown.

A selection of studies have investigated adversarial behav-
ior after the successful compromise of a honeypot. Ramsbrock
et al. [16] followed compromises made into four honeypots,
and was able to derive a state machine to describe the ac-
tions of adversaries. Barron and Nikiforakis [2] investigated
whether adversarial actions differed based on environmental
factors, for example depending on the presence of real users
on the systems and their usage of files. They were able to
distinguish between human and bot login activity, and noticed
humans did to a limited extent show interest in stored files
while bots generally avoided significant interaction with the
file system, and in half of the cases only proceeded to install
a proxy gateway.

While proposed methods can identify brute force attacks,
they do not allow for tool classification or for pre-emptively
stopping these attacks. Given the current threat landscape, in
which there is a high number of attackers, identifying attacks
in an early stage before actual compromization is increasingly
important. By forcing attackers to change their tools every
attempt, the cost for attackers increases and many attackers
will be priced out of the system. In this paper, we propose a
method to fingerprint tools in use by adversaries, which can
be used to track their activities over time, relate distributed
attempts to the same toolchain and possibly actor, and thus
gain a greater insight into the ecosystem as a whole.

3 The SSH Protocol

The secure shell protocol (SSH) is an established protocol
for accessing services on a remote host, which is secured
by an authentication procedure. In order for an attacker to
enter login credentials it is first necessary to set up a secure
protocol connection as specified in RFC4253 [20]. The main
steps in setting up a secure communication channel between
the attacker and its target are shown in figure 2 and go through
three main phases.

First, after a TCP connection has been established, both
parties exchange the version of the SSH protocol they are

Client Server

Connection and TCP Handshake

SSH Server Version String

SSH Client Version String

SSH_MSG_KEXINIT
SSH_MSG_KEXREPLY

SSH_MSG_KEXDH_INIT
SSH_MSG_KEXDH_REPLY

SSH_MSG_NEWKEYS
SSH_MSG_NEWKEYS

Protocol
Identification

Key Exchange
Negotiation
and Key
Exchange

Authentication
and SSH session

Figure 2: Schematic overview of the message exchanges in
the establishment of an SSH session.

running in the protocol identification phase. Typical exam-
ples of sent version strings are SSH-2.0-JSCH-0.1.51 and
SSH-2.0-paramiko_1.7.5. As will later be explained, the
version exchange is one of the components used for profiling
attackers.

As SSH provides an authenticated encryption tunnel, both
sides need to negotiate key material for the connection. In
the second phase of the protocol, client and server negotiate
the key exchange mechanism to be used. This negotiation
is initiated by the client through a key exchange initializa-
tion message (SSH_MSG_KEXINIT), which contains all the
different key exchange algorithms, encryption algorithms,
algorithms to compute a message authentication code, and
algorithms for compressing the data the client is able to ac-
cept. The order of the advertised algorithms is of importance
as the algorithms are advertised according to the host’s pref-
erence, and thus both the presence and order of algorithms
shared during this step of the SSH connection can be used
to profile a connecting client. After both parties have sent
and received the key exchange initialization message, the
highest commonly preferred algorithms are selected for set-
ting up a secure connection. Depending on which algorithms
have been chosen, the rest of the key negotiation and key
exchange procedure slightly varies. After the key negotia-
tion, the actual key exchange is initialized by sending the
SSH_MSG_KEXDH_INIT message, after which the key ex-
change algorithm is run. Once the algorithm is finished, each
side signals using a SSH_MSG_NEWKEYS message that the
secure connection is set up and ready to be used.

In the third phase, both client and server switch to an en-
crypted tunnel using the just negotiated key material and per-
form the authentication, during which the client sends its
login credentials. Given the correct credentials, the SSH pro-
tocol then makes the requested resource on the remote host
available to the client.

4 Fingerprinting Tooling

Brute forcing the login credentials to gain access to a shell
generally requires a great amount of attempts due to the large
amount of possible username/password combinations. There-
fore, it is uneconomical for an attacker to perform this task
manually, and he or she will likely resort to a tool in order to
automate the login attempts. Depending on the knowledge of
the attacker, he or she will utilize an existing tool or develop
a new one.

If the attacker opts to use known tools, there is no shortage
of available material. A quick search on any search engine
yields an extensive list of SSH brute forcing tools. Most of
these programs are advertised as penetration testing tools,
used to assess the security of a network, for example to find
servers that use weak login credentials. More so, entire articles
and tutorials are dedicated to the usage of those tools, such as
Hydra [8], Medusa [13], and Ncrack [12].

When writing an SSH brute forcing tool, one could create
an implementation of the SSH protocol, or use a pre-built
library that handles the SSH connection. The aforementioned
brute forcing tools utilize different libraries implementing the
SSH protocol, and only add the logic to perform the attack.
Although the libraries are likely to adhere to the standards
specified in the RFC describing the SSH protocol, minor
differences in connection establishment can be witnessed.
One of those difference is the announcement of the SSH
version. Libraries such as libssh [1] and libssh2 [17] use a
different version string to announce compatibility with the
same version of SSH protocol. Both libraries add their name
and release version into the SSH version string; libssh version
0.7.1 announces SSH-2.0-libssh-0.7.1, whereas libssh2
version 1.8.0 identifies itself as SSH-2.0-libssh2_1.8.0.
While this provides a first, trivial angle to identify the tools
used by attackers, we only use this information as a reference
and later combine it with the capabilities implemented by
a specific library. Thus, if an adversary is spoofing the
version string, the announced version will not match the
fingerprint of the advertised key exchange, encryption, MAC
and compression algorithms anymore, which in combination
yields an even more distinctive fingerprint for a specific brute
forcing tool implementation.

Similarly to the announced version string, the information
exchanged during the key exchange initialization varies be-
tween libraries. As discussed in the previous section, during
the session establishment, different algorithm suites are an-
nounced in order of preference. Not all libraries support all
key exchange, encryption, MAC, or compression algorithms.
More so, not all libraries supporting identical algorithms will
order them according to the same preference. This multitude
of possible variation of the initialization message increases the
likelihood of libraries implementing them differently, which

can be leveraged to identify the tool and/or underlying library
in an incoming SSH connection request.

In order to compare different key exchange initialization
messages, the four exchanged capabilities as discussed in
Section 3 are used. The advertised

1. key exchange algorithms (kex),

2. symmetric encryption algorithms (enc),

3. message authentication code algorithms (mac), and

4. compression algorithms (comp)

are concatenated into a single capabilities string. Since we
only care about exact matches in capabilities, we hash the con-
catenated string as a fingerprint for a specific tool. Consider
the case of an out-of-the-box SSH server install on Ubuntu
16.04 Desktop, which comes preconfigured with the following
configuration:

• KEX algorithms: curve25519-sha256@libssh.org,ecdh-
sha2-nistp256,ecdh-sha2-nistp384,ecdh-sha2-
nistp521,diffie-hellman-group-exchange-sha256,diffie-
hellman-group14-sha1

• Ciphers: chacha20-poly1305@openssh.com,aes128-
ctr,aes192-ctr,aes256-ctr,aes128-
gcm@openssh.com,aes256-gcm@openssh.com

• MAC algorithms: umac-64-etm@openssh.com,umac-
128-etm@openssh.com,hmac-sha2-
256-etm@openssh.com,hmac-sha2-
512-etm@openssh.com,hmac-sha1-
etm@openssh.com,umac-64@openssh.com,umac-
128@openssh.com,hmac-sha2-256,hmac-sha2-
512,hmac-sha1

• Compression algorithms: none,zlib@openssh.com

Thus, we obtain the fingerprint through the MD5 hash of

curve25519-sha256@libssh.org,ecdh-sha2-nistp256,ecdh
-sha2-nistp384,ecdh-sha2-nistp521,diffie-hellman-gro
up-exchange-sha256,diffie-hellman-group14-sha1;chach
a20-poly1305@openssh.com,aes128-ctr,aes192-ctr,aes25
6-ctr,aes128-gcm@openssh.com,aes256-gcm@openssh.com;
umac-64-etm@openssh.com,umac-128-etm@openssh.com,hma
c-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh
.com,hmac-sha1-etm@openssh.com,umac-64@openssh.com,u
mac-128@openssh.com,hmac-sha2-256,hmac-sha2-512,hmac
-sha1;none,zlib@openssh.com

resulting in 9f735e5485614bcf6e88b9b848582965.

Finding or building a tool for SSH brute forcing is only the
first step for an attacker towards compromise - next the ad-
versary needs to choose which login credentials to use during
authentication. Here the attacker has three main choices:

First, an attacker can opt to incrementally, pseudo randomly,
or randomly generate the username and password from a pre-
defined set of characters. Given enough time, and assuming
the attacker is not blocked after some attempts, this method is
bound to provide access to the targeted machine. Second, an
attacker can decide to generate the login credentials using a
dictionary attack. In a dictionary attack, words are combined
to form the password and or username. Third, an attacker can
choose to use predefined login credentials and available pass-
word lists. As with SSH brute forcing tools, a quick search
on any search engine reveals a plethora of hits advertising
password list for download. These lists often contain known
default passwords and usernames such as admin and root.

Here, again, the different options available for the attack-
ers to generate the login credentials offers an opportunity to
detect brute forcing campaigns, and we put forth the assump-
tion that the same adversaries will most likely use the same
or similar login credentials when trying to exploit systems.
Under the premise that an attacker will use the same tool to
attack multiple targets, the same fingerprints for a single IP
address should be witnessed at different honeypots. While
the combination of algorithms provides already a distinctive
fingerprint for a specific tool, in the later part of our evaluation
we further investigate the relationship between identical tools
and password generation algorithms. If an attacker uses multi-
ple machines or IP addresses with the same brute forcing tool
and password generation algorithm, the previously described
fingerprints can be used to cluster IP addresses belonging to
the same attacker.

5 Data Collection

This section describes the setup of our honeypot infrastructure
and the data acquisition strategy used in this paper. As the goal
of our study is to demonstrate the possibility of fingerprinting
the tools and techniques used by adversaries in SSH break-in
attempts, we have designed a distributed honeypot system
and exposed approximately 4,500 honeypots distributed over
three /16 subnets to the open Internet.

5.1 Honeypot design
As you recall from section 3, the SSH protocol goes through
three main phases in connection establishment: first, client
and server announce their protocol versions to each other,
second, the endpoints exchange their ciphering, MAC and
compression capabilities and agree on a key, and finally, the
tunnel is authenticated by a public key or password before an
SSH session is established. While we would clearly expect to
see differences in the behavior of adversaries after they have
gained access to a particular machine, the SSH protocol is
complex enough and contains several configuration options
so that the tooling used by attacker may contain implemen-
tation differences, that will – as we show in the following –

allow recognition of a particular tooling even before the SSH
protocol advances to the password prompt and an interactive
session. The distributed infrastructure was therefore imple-
mented as a honeypot that would negotiate a key exchange
and an SSH session with the connecting client, display a lo-
gin prompt and collect usernames and passwords, but never
let any user in. While this simplifies containment and thus
reduces the risk of operating such a system, to the connecting
user it basically appears like a regular server and an incorrect
password guess.

In order to pose as yet another open SSH server, it is essen-
tial that the honeypot itself blends in with existing installations
found on the Internet, otherwise knowledgeable adversaries
could soon identify instances running some honeypot software
and avoid individual IPs or even subnets where honeypots
were detected. Thus, it would be a major failure if a system
meant to identify adversaries based on handshake fingerprints
could be fingerprinted itself, which has been found to be an
issue for existing common open source honeypots such as
Kippo or Cowrie [19]. To avoid this problem, we connect
the incoming session to an actual OpenSSH implementation
running inside a container, which matched in terms of version
strings, list of available algorithms and options and ordering
a default Ubuntu 16.04 LTS installation. This way, an ad-
versary probing the system for implementation deviations to
unexpected inputs will observe no difference from a typical
server, and to an adversary scanning the Internet for banners
and key exchanges our honeypots will blend in with what
one would expect when connecting to a popular deployed
operating system.

5.2 Organizational Placement

Aside from being identifiable based on specific implemen-
tation characteristics, it would also be conceivable that ad-
versaries could spot honeypots based on the way they are
deployed and subsequently avoid them. For example, an ap-
parently open SCADA system hosted on an Amazon EC2
cloud IP address should trigger some suspicion in a knowl-
edgeable adversary. In our case, an entire block of consecutive
IP addresses running SSH servers where otherwise nothing
else is open in the network could similarly bias the results,
and adversaries be motivated to evade such networks.

In order to create a believable posture and collect repre-
sentative results, we deployed the honeypot in the enterprise
network of an organization. This organization is connected
with three /16 networks to the Internet, on these networks
approximately 60,000 devices are active and incoming SSH
traffic is not filtered by the firewall. These 60,000 official
network hosts were of various types and origin, with a mix
of servers, workstations, laptops and other mobile devices.
While the foremost category would be constantly powered
on and accessible, personal workstations, laptops or phones
would only be powered on at select times.

2018-10-11 2018-10-12 2018-10-13 2018-10-14 2018-10-15 2018-10-16 2018-10-17

1000

2000

3000

4000
N

u
m

b
er

 o
f

h
on

ey
p

ot
s

Act ive honeypots over t im e

Figure 3: Number of active honeypots aggregated by hour over the course of one week in the study.

In this study, we spread the 4,500 honeypots randomly
throughout the network ranges of the organization, so that
they would be assigned IP addresses belonging to server,
workstation or mobile host subnets. This meant that IP ad-
dresses belonging to our honeypot system were located in
between sets of servers or regular user machines, thus an ad-
versary exploring the network could not evade the honeypots
by skipping select parts of the network ranges, and after scan-
ning several “official” servers our honeypot would appear to
the adversary as just another server in the same group. The
routing rules of the organization were set up in such a way
that IP addresses that were allocated to a host but also chosen
for the honeypot were forwarded to the official host whenever
powered on, and forwarded to the decoy as soon as the official
host left the network. This way, adversaries interacting with
the organization’s hosts would experience an instantaneous
seamless handover to our honeypot infrastructure.

Figure 3 depicts the number of active honeypots in our
deployment over the course of one week. The graph clearly
shows a diurnal pattern stemming from a base population of
approximately 1,500 active systems in server and workstation
ranges, as well as an additional 3,000 decoys which only be-
come activated when the mobile and temporary devices leave
the network. Both components of our honeypot deployment
strategy make it thus very challenging for an adversary to
locate and evade our infrastructure.

6 Evaluation

This section evaluates the results of applying the fingerprint-
ing methods on the dataset. Both the SSH versions string and
the fingerprint based on the session negotiation are analyzed.
In addition, we use time and password correlation to evaluate
the hypothesis that attackers leverage multiple hosts to brute
force SSH servers.

6.1 Available fingerprints

During the data collection period, a total of 107,793 hosts tried
to brute force the login credentials of one or more honeypots

in our network. We only considered source IPs that completed
at least one completed SSH key exchange towards our 4,500
honeypots during the entire month, thus excluding mere TCP
SYN scans. Within this entire dataset, we observed a total
of 123 SSH version strings, and identified 49 distinct MD5
hashes for different libraries and library versions in use.

While the analysis yielded a substantial count of different
fingerprints and version strings, we also find that these in-
stances are also surprisingly well spread across source hosts.
The distribution of source IPs that use a particular fingerprint
follows an exponential decay; while the most commonly used
library fingerprint is used by 58% of the sources, already the
bottom half of the top 10 fingerprints account only for frac-
tions of a percent. Fingerprints thus have large amounts of
variations, and are distinctively correlated to sources: more
than 89% are only associated with one fingerprint over the
entire observation period. Similar results apply to the version
strings; the top 3 version strings are used by more than 75%
of all source IPs, also here 90% of all sources only advertise
one version string to our honeypot during the entire period.

The large body of fingerprints compared to the number
of available tools, as well as the larger number of version
strings compared to the amount of fingerprints matches our
expectations how brute forcing tools are developed and used.
First, as commonly used tools build on system libraries such
as libssh or OpenSSH, major updates to the underlying sys-
tem library implementing the SSH protocol will result in a
new fingerprint, even though the adversary uses the same
toolchain.

Second, tools (or their users) actively change the version
string and configuration advertised by their toolchain, possi-
bly in an attempt to evade detection by signatures. Examples
of this are invalid encryption and mac algorithms such as
hmac-sha\x11 and "lowfIsh in some of the key exchange
messages. Software packages such as OpenSSH allow a user
to configure the ciphers used in the key exchange message,
even if these algorithms are not implemented in the library
itself. Inspection of the source code of for example the lib-
ssh2 library reveals that the versions strings announced by
the majority of the hosts matches with the one in the source
code. When we further analyze the design of available brute

0.9 1.2.2 1.2.3 1.2.8 1.4.3 1.7.0

+3 AES
+1 ARCFOUR

-2 MANDATORY MD5 MAC ORDER CHANGE
COMPRESSION

+1 COMPRESSION +1 DH
+2 MAC

MAC FACULTATIVE
KEX ORDER CHANGE

LIBSSH2 Fingerprint Evolution

Figure 4: Evolution of the algorithms used by the libssh2 library to construct the SSH_MSG_KEXINIT message.

forcing tools, we can link common tools back to these li-
braries. Medusa [13], a tool for SSH brute forcing included
in Kali linux, builds on this library in this selected version.
The analysis of the 35 million compromisation attempts using
the SSH version and key exchange fingerprinting leads to the
conclusion that the majority of attackers use readily available
tools to perform the brute forcing.

6.2 Fingerprints and libraries

Different tools generate different combinations in terms of
SSH version strings and key exchange fingerprints. If two
tools use different libraries implementing the SSH protocol,
the announced SSH version string will likely be different. As
seen in the data, the name of the SSH library is often included
in the announced SSH version string.

Similarly, the fingerprint retrieved from the key exchange
can also provide an indication of the tool used. Tools
building upon different libraries will announce different
algorithms during the key exchange. This is due to different
libraries supporting different algorithms and announcing
them in different order of preference. Therefore, due to slight
variations in used libraries and implementations, tools can be
linked to the fingerprints generated by processing the SSH
version string and the key exchange initialization message.

In order to investigate the origin of the fingerprints and
study user customization, we downloaded 10 commonly used
SSH brute forcing tools to inspect which library is linked to re-
alize the SSH protocol, and in addition mined the SSH version
strings from all received handshakes for mentions of libraries
or implementation stacks. This yielded a total of seven li-
braries that are utilized across SSH brute forcers we observed,
namely (1) Granados, (2) JSCH, (3) libssh, (4) libssh2, (5)
OpenSSH, (6) paramiko, and (7) the Erlang standard SSH
implementation. For all these libraries, we downloaded every
single release, as well as every intermediate version available
in the software repositories and manually identified the loca-
tion in the source code responsible for the SSH connection
and parameter selection. A program then identified every in-
termediate/release version when this code was modified over
the entire period of the softwares’ past development, and we
manually analyzed each changed code segment to extract how

this library would advertise itself as in this particular version.
This yielded a set of (banner, MD5 hash) tuples, which is on
the one hand dependent on the version of a library, on the
other hand also on certain options and taken branches in the
code, for example if certain other libraries or headers were
available on the system where it would be compiled and thus
activate ifdef blocks. Based on this, we generated a set of
possible 57 banner-hash tuples for the seven aforementioned
libraries, implemented in a particular software package at any
point in time.

Figure 4 shows this evolution for the libssh2 library with
respect to the construction of the SSH_MSG_KEXINIT mes-
sage. While libssh2 saw several intermediate releases between
version 0.9 and version 1.2.2, and the library advertises itself
differently in between these two releases, the cryptographic
routines remained unchanged during all of these updates lead-
ing to an identical fingerprint. In 1.2.2, three options for the
data encryption using the AES cipher suite as well as the
option to encrypt using RC4 were added, while in 1.2.3 the
previously mandatory option to create a message authentica-
tion code using MD5 was removed. Later versions such as
1.2.8 only differed in the order they advertised the preference
of algorithms. Similar version graphs were created for the
other six libraries mentioned above, most of them appeared
in our data set announcing different release versions.

When libraries are compiled, the supported algorithms
might differ, depending on installed software packages that
are required by the algorithms. These dependencies can
greatly affect the number of supported algorithms during the
key exchange initialization, which is why we have identified
all different combinations possible. These also result in a
unique fingerprint for a particular installation path and thus
allow a peek into the configuration of the attack hosts.

Given the advertised library and version string we can then
cross validate whether the fingerprint obtained from the hand-
shake is consistent with the default behavior of the library, or
whether some code changes or configuration changes were in-
troduced. Interestingly, when we look at the 123 SSH version
strings and 49 fingerprint hashes that we collected in our hon-
eypots, we find that all 57 theoretically possible tuples from
the software libraries were present. When we match the ver-
sion string for a particular library and the fingerprint hash that
should have been generated from the honeypot handshake,

we find that there is only a match for 26 out of the checked
57 library versions. This indicates that in 31 instances, more
than half, the announced version string is spoofed. We manu-
ally verified these instances of spoofing, and found that while
some of them are attempts to make the version string more
generic, others modify the version number of a library or
pretend to run a different software stack than the behavior
of the library would in practice indicate. For example, a par-
ticular brute forcing tool would announce OpenSSH version
4.3, but announces a cipher suite that was not implemented
in this particular version. Also, the order of algorithms for
some advertised versions of libssh and libssh2 do not match
the implementation of the library.

While spoofing of version string is common among attack-
ers, given our tracking of code changes, we were able to trace
back 26 out of the 31 spoofing instances to a library that is
consistent with the behavior of the brute forcing tool. Overall,
we find that we were able to identify more than 91% of the
tools used to attack our honeynet using the fingerprint.

6.3 Collaborating hosts
As we have shown in the previous part, the combination
of available key exchange algorithms, cipher suites, MAC
and compression options together with the advertised version
string does contain large amounts of entropy. As an addi-
tional verification that this fingerprint can serve as a measure
to fingerprint the tooling itself, we look in this part into the
behavior of the hosts exhibiting a particular fingerprint. If
this relationship holds, we would expect the following two
results: First, commonly available tools should see continuous
usage, but within this set there could be groups of hosts that
use the same tool in a specific way or with a similar behav-
ior that could be clustered together. Second, given that we
identified 31 mismatching version strings and fingerprints, we
would expect some adversaries to have built custom tools for
SSH brute forcing. As these are not publicly available, they
should only be in used by a limited group of source hosts,
thus the tool fingerprint could be used as a proxy to partially
fingerprint the actor.

In the following, we will now investigate the different be-
haviors of the 49 different key exchange-cipher-MAC algo-
rithm hashes that we initially discovered in our dataset. Fig-
ure 5 shows the activity of the these fingerprints over the
course of the experiment, for compactness of the figure and
the discussion, each fingerprint has been assigned a numeric
ID from 0 through 48. The number of hosts using a tool with
a specific fingerprint at a given time is represented by the size
of the marker in the plot, with the area of the markers being
proportional to the number of unique hosts using a fingerprint
per hour. In the figure we can readily identify five distinct
behavioral patterns of fingerprint usage:

• Popular, commonly available tools such as Ncrack (fin-
gerprint 30 in cyan), or SSHtrix (fingerprint 16 in red)

2018-1
0-3

0

2018-1
1-0

6

2018-1
1-1

3

2018-1
1-2

0

2018-1
1-2

7

0

10

20

30

40

Fi
n

g
er

p
ri

n
t

ID

Num ber of IPs per fingerprint over t im e

Figure 5: Scatter plot showing the number of hosts using a
certain key exchange fingerprint over time. The number hosts
is indicated by the size of the markers.

or Hydra (fingerprint 4 or 14 depending on the operat-
ing system it is installed on such as raspbian), see some
continuous usage by a diverse and significant number of
origins. In the next section, we further show that these
groups can be separated by the password list configu-
ration of the brute forcer into distinct subgroups that
pursue a common strategy.

• Custom tools with a relatively uncommon or unique fin-
gerprint are essentially only in use by distinct groups of
adversaries. Often these are rolled out to a large amount
of hosts, and from there explore remote hosts simultane-
ously with synchronized start and stop times. Consider
for example fingerprint #23 indicated in green, which
performs a weekly recurring scan of the address space,
always using a similar amount of resources. Similar be-
haviors are shown by the groups of hosts using the tool
with fingerprint #42 (orange) who scan every other day,
or by the groups scanning bi-hourly using the tool with
fingerprint #46 (brown).

• Among these, some custom tools are run at low intensity
only by a select group of origins, which on average make
less than 4 login attempts per hour. All installations with
fingerprint #36 (purple) operate in this way, and may be
classified as a slow brute forcing campaign following
the description by Javed and Paxson [10].

• Distributed hit & run campaigns only occasionally sur-
face, but then for a short period of time brute force many
remote hosts with a large number of resources. Interest-
ingly, we observe these hit & run campaigns to typically
exhibit a unique fingerprint and thus employ custom

tooling for their activities, which makes these attempts
and hosts participating in them easily identifiable by our
proposed method. Examples of such fast, concentrated
attempts are fingerprints 39 (light green) or fingerprint
29 (gray). The plot shows that both clusters become ac-
tive during the same time period, around November 20th,
and have approximately the same size. A closer inspec-
tion reveals that the hosts using the tool identified by
fingerprint ID 29 are also using the tool identified by
fingerprint ID 39. The IP addresses are located in 103
different /8 subnets indicating that the attacker has the
knowledge, resource and intention to spread his or her
infrastructure across the Internet, possibly in an attempt
to avoid detection.

6.4 Password combinations

After the completion of the key exchange and session nego-
tiation, the adversaries were presented a login prompt they
could interact with. Past work such as Nicomette et al. [15]
have used the entered user credentials to link individual lo-
gin attempts into related clusters, and for example identified
relationships between dictionaries but also noticed that only
few of them were reused across adversaries. As discussed
before, the economies of scale would imply that an attacker
is most likely going to deploy the same setup and tooling
on different hosts to launch attacks, thus the same tooling
would result in an identical fingerprint, and thus help us gain
deeper insights into the activities of the attackers, for example
if they are splitting and distributing parts of dictionaries for
brute forcing across collaborating hosts. In this section, we
will discuss the relationship between groups found based on
an identical banner and key exchange, and their associated
password lists.

For each of the 49 fingerprints detected earlier, we extracted
all SSH sessions from any host that exhibited this signature
and assembled the set of credentials (username + password)
during login attempts. Table 6.4 shows a selection of 8 fin-
gerprints, which exemplarily shows the spectrum of different
key exchange - password list behaviors found throughout
the dataset. From the data we can distinguish three types of
groups: First, we see clusters where tools and the credential
list used are tightly linked together. Second, we clearly see
select fingerprints in wide use, which focus on (subsets of)
fixed password lists. Third, we observe groups of tooling,
where hosts pursue brute forcing with diverse and customized
password lists. We will discuss each of these three categories
in the following subsections.

6.4.1 High credential / tool correlation

For each group advertising the same banner and using the
same key exchange algorithm, the table lists the number of
IP addresses matching this fingerprint and the number of

unique login credentials list used by an attacker belonging
to the cluster. To provide a better understanding of the login
credential lists used, the number of hosts using the 5 most
frequently used credential lists are shown.

All clusters in this category exhibit a tight link between the
fingerprint and the utilized password list. For example, the fin-
gerprint 0df0d56bb50c6b2426d8d40234bf1826 of cluster 1
is sent by 684 hosts, however within this group only 9 differ-
ent password lists are used. The vast majority of hosts in this
cluster, 672 or 98.2%, always send the exact set of credentials
to our honeypots, deviations of the cluster default occur only
very infrequently among all remote hosts having connected to
our honeypots. In addition to the strong link from a particular
fingerprint to a credential list, also the reverse is true: no other
attackers have been using this credentials list in the dataset.
This would indicate that the proposed fingerprinting method
can be used as a predictor for password usage.

6.4.2 Popular tool

The second category of behaviors we can distinguish in the
fingerprint analysis are those tools which are widely deployed
but are run similarly configured. In this particular category,
we observe the presence of multiple common credential lists,
from which hosts pick a subset and brute force all of our
honeypots with the same credential set.

An example of this is cluster 5 with 86,805 IP addresses,
which employed a surprisingly low number of 625 login cre-
dentials lists. The top five groups all settle on a permutation
of (admin, admin), (admin, default), (admin, password) and
move horizontally throughout our ranges. Other groups of
hosts choose from lists geared towards specific type of de-
vices, for example credential lists associated with common
IoT devices or Raspberry Pi distributions.

6.4.3 Diverse credential lists

While both previously described clusters could also have be
discovered using password-based grouping as adversaries
shared significant credentials, we found a third behavior of
brute forcing which would have remained undetected to es-
tablished methods. Clusters 6 through 8 belonged to a new
category characterized by a high number of credentials list
and a low number of IPs using identical credential lists.

Consider for example the case of group 6, where 557 dif-
ferent password lists appear across 564 different hosts. This
is due to the fact that attackers in this cluster use random or
pseudo randomly generated passwords in combination with
22 fixed credential tuples. The generated passwords are all
10 characters long consisting of letters and numbers. Next to
randomization, each host only performs a limited amount of
login credentials, 80% (463 out of 564 IPs) use less than 60
unique login credentials. Another indicator of randomization
is the low overlap between passwords, 6,592 of the 10,318

Type High credential / tool correlation Popular tool Diverse credential lists

Banner SSH-2.0-
OpenSSH_7.4p1
Raspbian-
10+deb9u3

SSH-2.0-
OpenSSH_7.4p1
Raspbian-
10+deb9u4

SSH-2.0-
libssh2
_1.8.1_DEV

SSH-2.0-
libssh2_1.7.0

SSH-2.0-
libssh2_1.8.0

SSH-2.0-Go SSH-2.0-Go SSH-2.0-
libssh-0.6.3

Kex 0df0d56bb50
c6b2426d8d4
0234bf1826

0df0d56bb50
c6b2426d8d4
0234bf1826

1616c6d18e8
45e7a01168a
44591f7a35

a7a87fbe867
74c2e40cc4a
7ea2ab1b3c

a7a87fbe867
74c2e40cc4a
7ea2ab1b3c

c39f4cec145
ee3d50fb590
595143b9d5

72d744cee7c
48197c1b569
73e8600140

51cba571255
23ce4b9db67
714a90bf6e

Cluster 6 7 8 4 5 1 2 3
IP count 684 1138 85 6473 86805 564 208 4479
cred. lists 9 5 7 2688 635 557 111 4438

Credential list
Top 1 list 672 1127 79 3602 64140 3 65 18
Top 2 list 2 6 1 16 6024 2 11 3
Top 3 list 2 3 1 16 4488 2 7 3
Top 4 list 2 1 1 13 4347 2 5 3
Top 5 list 2 1 1 10 2832 2 3 2

login credentials are used by only one IP address. The pass-
word randomization is confirmed by a mean Jaccard index of
0.4 of the credential lists used in the cluster.

While randomization of credentials would make it challeng-
ing for a password-based clustering algorithm to detect simi-
larly acting groups, the same will hold true for brute forcers
that rely on a very long lists of candidate credentials from
which username/password combinations are picked. This will
dilute possible linkage from the perspective of common cre-
dentials, however a clustering based on the fingerprint will
find these relationships.

In this section we have shown that clustering based on
SSH banners and key exchange algorithms can find differ-
ent types of clusters. The proposed method is able to find
groups using extensive password lists or random password,
whereas password-based solutions would struggle. However,
password-based solutions can provide better clustering perfor-
mance for popular tools having multiple credentials lists such
as cluster 5, hence a combination of both a fingerprint-based
and password-based approach promises to provide more, and
complementary findings.

7 Conclusion

In this work, we have described a method for fingerprinting
tools for SSH brute forcing based on version strings and ad-
vertised algorithms. As this method distinguishes tools based
on the data exchanged during the key initialization, we are
able to detect tools prior to even entering the session authenti-
cation, and can deploy the mechanism transparently without
any changes necessary to an existing enterprise infrastructure.

We have deployed the fingerprinting method over 4,500
honeypots for a period of one month, and from 35 million
login attempts been able to detect 49 different fingerprints.
The results indicate that different tools are used in different

ways, indicating that attackers customize, or develop their
own tools. Looking at the behavior of different tools, we were
able to identify clear timing patterns originating from different
tools, while based on timing patterns we can detect distributed
brute forcing campaigns. By fingerprinting the tools used in
a campaign, we are able to track and analyze the campaign
over time. Additionally password analysis of detected clusters
allowed us to identify different brute forcing methods. Both
assessments contributed in providing insights into the tactics,
techniques and procedures of the attackers.

Future Work

The work presented in this paper was conducted from the
angle of cyber threat intelligence, with the aim of augmenting
the portfolio of methods to fingerprint adversarial tooling and
gather insights into their activities and behavior. This study
led to a variety of different fingerprints, some of which could
be traced back to specific brute-forcing tools. In principle,
the contribution of this method could however be wider, and
potentially be suitable as an additional detection rule within
the context of intrusion detection systems. To evaluate its
merit for such active threat detection and prevention, further
research is however needed to evaluate its efficacy, which has
not been done within the scope of this study.

References

[1] Aris Adamantiadis, Andreas Schneider, Nick Zitzmann,
Norbert Kiesel, and Jean-Philippe Garcia Ballester. lib-
ssh. https://www.libssh.org/.

[2] Timothy Barron and Nick Nikiforakis. Picky attackers:
Quantifying the role of system properties on intruder
behavior. In Annual Computer Security Applications
Conference, 2017.

[3] David J. Bianco. The pyramid of pain, 2013.

[4] Zakir Durumeric, Zane Ma, Drew Springall, Richard
Barnes, Nick Sullivan, Elie Bursztein, Michael Bailey,
J. Alex Halderman, and Vern Paxson. The security im-
pact of https interception. In The Network and Dis-
tributed System Security Symposium, 2017.

[5] Vincent Ghiette, Norbert Blenn, and Christian Doerr.
Remote identification of port scan toolchains. In IFIP
International Conference on New Technologies, Mobility
and Security, 2016.

[6] Vincent Ghiette and Christian Doerr. How media re-
ports trigger copycats: An analysis of the brewing of
the largest packet storm to date. In ACM SIGCOMM
Workshop on Traffic Measurements for Cybersecurity
(WTMC), 2018.

[7] Laurens Hellemons, Luuk Hendriks, Rick Hofstede,
Anna Sperotto, Ramin Sadre, and Aiko Pras. Sshcure:
a flow-based ssh intrusion detection system. In Confer-
ence on Autonomous Infrastructure, Management and
Security, 2012.

[8] Marc Heuse, David Maciejak, and Jan Dlabal. Hydra.
https://github.com/vanhauser-thc/thc-hydra.

[9] Martin Husák, Milan Čermák, Tomáš Jirsík, and Pavel
Čeleda. Https traffic analysis and client identification
using passive ssl/tls fingerprinting. The European As-
sociation for Signal Processing Journal on Information
Security, 2016.

[10] Mobin Javed and Vern Paxson. Detecting stealthy, dis-
tributed ssh brute-forcing. In ACM Special Interest
Group on Security, Audit and Control Conference on
Computer & Communications Security, 2013.

[11] Maciej Korczyński and Andrzej Duda. Markov chain
fingerprinting to classify encrypted traffic. In IEEE In-
ternational Conference on Computer Communications,
2014.

[12] Gordon Lyon and Fotios Chantzis. Ncrack. https:
//nmap.org/ncrack/.

[13] Joe Mondloch. Medusa. http://foofus.net/goons/
jmk/medusa/medusa.html.

[14] Maryam M Najafabadi, Taghi M Khoshgoftaar, Clifford
Kemp, Naeem Seliya, and Richard Zuech. Machine
learning for detecting brute force attacks at the network
level. In International Conference on Bioinformatics
and Bioengineering, 2014.

[15] Vincent Nicomette, Mohamed Kaâniche, Eric Alata, and
Matthieu Herrb. Set-up and deployment of a high-
interaction honeypot: experiment and lessons learned.
Journal in Computer Virology, 2011.

[16] Daniel Ramsbrock, Robin Berthier, and Michel Cukier.
Profiling attacker behavior following ssh compromises.
In IEEE/IFIP International Conference on Dependable
Systems and Networks, 2007.

[17] Daniel Stenberg, Marc Hörsken, Viktor Szakats, and
Will Cosgrove. libssh2. https://www.libssh2.org/.

[18] Qixiang Sun, Daniel R Simon, Yi-Min Wang, Wilf Rus-
sell, Venkata N Padmanabhan, and Lili Qiu. Statistical
identification of encrypted web browsing traffic. In
IEEE Symposium on Security and Privacy, 2002.

[19] Alexander Vetterl and Richard Clayton. Bitter har-
vest: Systematically fingerprinting low- and medium-
interaction honeypots at internet scale. In USENIX Work-
shop on Offensive Technologies, 2018.

[20] T. Ylonen and C. Lonvick. The secure shell (ssh) trans-
port layer protocol. Technical report, Internet Engineer-

ing Task Force, 2006.

