Could you clean up the Internet with a Pit of Tar?
Investigating tarpit feasibility on Internet worms

Harm Griffioen
Hasso Plattner Institute
University of Potsdam, Germany
harm.griffioen @hpi.de

Abstract—Botnets often spread through massive Internet-wide
scanning, identifying and infecting vulnerable Internet-facing
devices to grow their network. Taking down these networks is
often hard for law enforcement, and some people have proposed
tarpits as a defensive method because it does not require seizing
infrastructure or rely on device owners to make sure their devices
are well-configured and protected. These tarpits are network
services that aim to keep a malware-infected device busy and
slow down or eradicate the malicious behavior.

This paper identifies a network-based tarpit vulnerability
in stateless-scanning malware and develops a tarpitting exploit.
We apply this technique against malware based on the Mirai
scanning routine to identify whether tarpitting at scale is effec-
tive in containing the spread of self-propagating malware. We
demonstrate that we can effectively trap thousands of devices
even in a single tarpit and that this significantly slows down
botnet spreading across the Internet and provide a framework to
simulate malware spreading under various network conditions to
apriori evaluate the effect of tarpits on a particular malware. We
show that the self-propagating malware could be contained with
the help of a few thousand tarpits without any measurable adverse
impact on compromised routers or Internet Service Providers,
and we release our tarpitting solution as an open platform to the
community to realize this.

I. INTRODUCTION

When connecting a host to the open Internet, it does not
take long before the first connection requests arrive. Probing
for services such as SSH, telnet, DNS, or SIP, these are part
of continuous scanning activity from various actors, testing
which IPs are active on the Internet and which hosts may be
compromised, used as amplifiers for attacks or broken into.
If a computer responds to these requests, the machine may be
inspected further, either by the scanner itself or a second-stage
device trying to establish a foothold on the machine.

The bulk of the scanning and initial compromise activity
comes from automated tooling and scripts [20] that either
rely on common passwords [11], attack services based on
pre-defined signatures, or blindly launch exploits directed
at common and frequently unpatched vulnerabilities. Given
the plethora of Internet devices and generally low security
awareness, it is only a matter of time before one of these
attackers “gets lucky”. As Internet-connected devices are often
set up using weak, common, and insecure passwords [7]
or are not updated to address vulnerabilities [39], there are
enough victims to make automated scanning and exploitation
a profitable activity. This explains figures such as [23] which
report that 63% of Internet scans target port 23 and [16] that
the portion of malicious Internet traffic is heavily increasing.

Christian Doerr
Hasso Plattner Institute
University of Potsdam, Germany
christian.doerr @hpi.de

Potential
Victims

((‘lﬂ) ((‘l}))

Compromised
Devices

Aieslanpy

Honeypots
for evaluation of
mitigation impact

“Decoy Victim”

for drawing in attempts

Telescope
for identification of
compromised devices

Fig. 1: A network telescope detects infected devices and
informs a tarpit to offer itself as a decoy victim. Honeypots
measure the effect from reduced compromization activity.

As many insecure devices expose themselves on the Inter-
net and automatic scanning is both low effort and lucrative,
neither problem will go away on its own. Today, botnets
comprised of hundreds of thousands of low-powered devices
[28] are together capable of launching major distributed denial-
of-service attacks [25], originate SPAM [36], or participate in
cryptocurrency fraud [13]. This poses the question of whether
it is possible to prevent large-scale exploitations by addressing
the link between perpetrator and victim: can we somehow
interfere that these scripts do not efficiently find victim devices
to exploit? As we cannot and do not want to interfere with the
network itself, we advertise decoy devices so that adversaries
concentrate the bulk of their malicious activities on them and
have, in turn, fewer resources to go after real victims.

One of the key engineering principles to make high-speed
scanning and exploitation possible is that devices do not keep
track of past and ongoing connection requests they have sent
[17]. As the book-keeping from making contact to an IP
address and retrying on a non-response would be way too slow
to cover significant parts of the Internet, modern scanning tools
blast out connection requests via raw sockets without actually
going through the operating system to establish a connection.
If an answer comes back, the tool checks based on header field
values whether this response could be related to the previous
scan and hones in on those IP addresses that have responded.

In this paper, we exploit this design and trick scanners to
believe they have received an answer from a device they have

not even contacted. We utilize this flaw to collect connection
attempts from infected devices and actively respond to all these
requests from a decoy victim using these connection details.
The decoy then traps the device at the transport and application
layer, and due to the single-threaded nature of these malwares,
brute-forcing does not continue elsewhere on the Internet. The
malware will thus be hindered in propagating further and
ultimately decline. As we show in section V, the trapping
of the malware does not impair the devices or the Internet
connection of the infected users, and only adds insignificant
additional traffic to the Internet. Through our work, we make
the following contributions:

e We are the first to evaluate the merits of tarpitting
at scale against a real-world botnet and introduce a
method to “trick” a stateless scanner into a tarpit and
evaluate how to traverse a NAT.

e We set up an operation to tarpit botnet connections that
scan the Internet using stateless-scanning techniques.
We show that using a single decoy server, we can
tie up 48% of all Mirai-infected devices from further
spreading the malware at the cost of 35 Euro/month.
With 45 Mbps sent from a single decoy, we cut brute-
forcing attempts on the Internet from Mirai in half.

e We demonstrate that full containment of self-
propagating malware is feasible in practice based on
experimental measurements and agent-based simula-
tions and open-source a multi-protocol tarpit allowing
volunteers to join the containment of botnets.

II. BACKGROUND

The work put forward in this paper is applicable to the con-
tainment of any self-propagating malware. In the following, we
focus on the Mirai IoT malware as one of the most significant
Internet threats [10], which is responsible for 87% of all telnet
compromization attempts worldwide [20]. Cleaning up Mirai
and its siblings will therefore drastically reduce brute-forcing
activity as a whole, but the presented method does also work on
other stateless malware (which we also trapped but excluded in
the discussion). To understand why trapping would be effective
in today’s high-performance scanning routines, we first need
to introduce some background about the Mirai ecosystem and
the way it selects its targets.

The Mirai Ecosystem. The Mirai [oT botnet is the
result of three infrastructure components: compromised IoT
devices, the malware loader and a command & control server.
As shown in Figure 2, the core of the botnet consists of
vulnerable IoT devices, which are recruited to launch attacks
on victims and play a key role in spreading the infection
further: Compromised hosts independently scan the Internet on
TCP ports 23 and 2323 (1), and once they discover a host with
an open telnet port, they start brute-forcing it based on a fixed
list of credentials (2). If some username/password combination
has provided access, it is reported to a loader server (3), which
then installs the Mirai malware on the vulnerable device (4).
Mirai is a volatile malware; in other words, the infection only
lasts until the device is rebooted or crashes. The device is then
able to be infected again. Infected IoT devices call back to a
central command & control (C&C) server for commands.

Compromised

controli #’* ((‘I’)) g
o

i S
]
4
g X
3 - loT device 1) random scanning
< % | [_-wonport23

= : -~ o

g + 3) reporting Niniaink o
i T TEA
E ~—\ H 1 N 1y, A
K o O SR, \ v 4
o = B 4 o
3 2) brute-forcing Vulnerable-L

of credentials
»

I?;I' device

4) installation of malware

Fig. 2: Devices infected with Mirai scan the Internet for
vulnerable hosts, and report their findings to a loader.

Scanning and Brute-Forcing Processes. Although the
malware loader technically makes the infection, Mirai behaves
like a worm as the compromised devices are responsible for
discovering and breaking into additional victims. In order
to spread effectively, Mirai uses some architectural designs
commonly found in high-performance port scanning software
such as ZMap or Masscan. As opening TCP sockets in the
operating system comes with significant overhead and the OS
limits open connections, consecutive connections would be
too inefficient. Instead, Mirai performs scanning using RAW
packet injection: the malware crafts TCP SYN packets to
randomly generated destination IPs and directly injects them
into the network. If the destination IP is a device listening
on TCP port 23/2323, it will answer with a TCP SYN+ACK.
Once a SYN+ACK is received, the malware opens a “real”
network socket to the destination and begins brute-forcing.
By avoiding opening connections for scanning, Mirai does not
have to save any internal state and therefore progresses fast;
in our experiments, we saw [oT devices routinely scanning at
speeds exceeding 8500 packets/second.

Internally, this design is realized by two separate processes,
where the first one injects SYNs and the second one brute-
forces upon receipt of SYN+ACKs. The malware opens a
maximum of 128 brute-forcing connections which are fed by
a queue with observed SYN+ACKs. SYN+ACKs that arrive
when this queue is full are dropped, and we use this fact in
our work to eliminate the spreading of the worm: by tying up
as many of these 128 connections as possible, the bot has no
resources to brute-force newly discovered devices which means
the bot is not able to find the correct credentials and inform
the loader about a victim. The botnet propagation thus slows
down, potentially leading to the containment of the malware.

NATs and IP Churn. Mirai infections are not limited
to end users’ Internet routers, any device opening a telnet
port with weak login credentials is in principle susceptible.
This means that for dealing with Mirai infections we have to
consider three scenarios as depicted in figure 3:

Scenario 1: Infected Internet-facing device. In the simplest
case, the device is exposed via a public [P address to the
Internet and has opened port 23. The situation is typically the
case for home users where the router or Internet modem is
vulnerable. However, it may also occur in smart devices such
as TVs, printers, sensors, or enterprise environments assigned
to publicly routable IP addresses. Scans and brute-forcing
attempts will thus originate from the public IP address a and

:Scenario 2 (Home User):

1 Device behind internet-
Ifacing router is vulnerable/
:infected, exposed via UPnP

r
Scenario 1 (Home User): |
Internet-facing device is :
vulnerable/infected |
I [®)
I
I
1

b L.

public IP a "
public IP ¢

Internet

public IPs

r———n

XYz | !

fo—

Scenario 3 (ISP): CGNAT _______'
Devices behind carrier-grade NAT r o N
1

are vulnerable, exposed as single IP . i
private IPs | |

Fig. 3: Vulnerable devices could be exposed directly to the
Internet or via UPnP at public IPs, or hidden behind NATs.

b. Counting the number of scanning/brute-forcing public IPs
will reveal the number of infected devices on the Internet.

Scenario 2: Infected device behind a router. In some cases,
the infection is not borne by the device connecting to the
Internet, but by a device behind the router. In these situations,
a device has requested the router to open the telnet port and
forward incoming packets internally (e.g., via UPnP) and got
compromised as a result. As all telnet connections terminate at
the same device, any compromisation attempt from the outside
will end up at the same device. Thus, a quantification based
on public IPs will tally the number of infections.

Scenario 3: Carrier-grade NAT. As publicly routable IP
addresses are in short supply, many ISPs do not hand out
individual public IPs to each customer. Instead, the routers
of home users are given a local IP address and connect to the
Internet via a carrier-grade NAT (CGNAT). Thus, an arbitrarily
large number of home installations would be exposed via the
same IP address to the Internet. The CGNAT tracks the state
and matches incoming responses from the Internet to an earlier
request to deliver it to the correct local client. For tracking
Mirai infections, this creates the complication that more than
one device might be infected behind a public IP. Occasionally,
CGNATs are assigned a pool of public IPs (z, y, and z in figure
3), and may re-assign a particular home user to a different
public IP in regular time intervals, creating so-called IP churn.
This creates another complication for tracking, as the same
infection would be recorded multiple times over its lifetime if
only counting scanning IP addresses. IP churn is known as a
major factor in over- and under-estimating infections [24].

The particular setup of Mirai’s port scanning routines con-
veniently addresses both issues. As upon startup, the malware
picks a random source port and window size, this 32-bit value
is fixed during the entire infection period. Suppose scanning
packets originate from the public IP address x with two
different sourcePort/windowSize combinations. In that case,
we are confident that two devices behind that IP address have
to be infected, as Mirai binds to port 23 and thus prevents
two concurrent infections from being active on port 23 [21].
Similarly, if scanning traffic stops on IP z and shortly after
commences on IP y with the same sourcePort/windowSize
combination, there is only a one in four billion chance that
this is not the same infection. We can thus also reliably track
and count infections behind carrier-grade NATs.

III. RELATED WORK

The default action against botnets in the recent past has
not been based on tarpits but rather through sinkholing, where
the command and control (C&C) infrastructure is taken down
by researchers or law enforcement [33], [15]. The coordinated
takedown of a C&C is very labor-intensive and often escapes
long-term effects as malware authors will simply restart their
activities [18] and sightings frequently get reported with weeks
of delay [19]. Major botnets such as ZeuS or CodeRed could be
reactivated in a matter of days after such takedown [18], [22].
Furthermore, over the past decade, malware has evolved to use
peer-to-peer-based overlays [24], fast fluxing [34], proxy layers
[9], or bitcoin-based signaling [37], making it increasingly hard
to find and take down a C&C server.

Some studies have shown that so-called tarpits can be
used to reduce impact of DDoS attacks [30], SPAM [12]
and Web Crawlers [38] by occupying infected devices. While
researchers have focused on creating and evaluating tarpits,
no work has evaluated the effect of a tarpit on large malware
installations. We are, however, interested in how this approach
would work in practice with a sufficiently large monitoring
infrastructure, and whether a large tarpit infrastructure would
be capable of slowing down the spread of a botnet.

Tarpits aiming to trap malicious devices have been around
for a long time. The first tarpit was called “LaBrea” and was
introduced by Tom Liston [1] in response to the CodeRed
worm [31] that exploited a vulnerability in Microsoft IIS
web servers to spread through the Internet. LaBrea monitors
TCP traffic towards a host and replies with a SYN+ACK
that completes the TCP handshake and makes the malicious
program wait for new replies that are never sent. Since its
inception, other research has developed tools to reduce network
attacks based on tarpits. Borders et al. [14] created OpenFire,
which fills unused address space with honeypots and makes
the entire port space appear to be open to an attacker. Modern
scanning software and malware have implemented both multi-
threaded infrastructures and network timeouts, limiting the
impact of OpenFire. As tarpits and honeypots in general
introduce a bias for researchers scanning the Internet, Alt et
al. created “Degreaser” [8] which identifies and filters tarpits.
Adversaries could use this to evade these infrastructures, but
this would take extra effort to identify and stop the scanning
of these devices. Especially in distributed environments such
as a botnet this will be hard to implement.

When a worm connects to a tarpit that attempts to keep the
malware occupied on the network layer, the worm does not
receive the expected application layer data, and the malware
author can use a timeout to detect the trap. Walla and Rossow
[40] propose an automated method to identify implementation
mistakes in the malware that can be used to halt the program
execution remotely. Other researchers have devised methods
to scale tarpits to IPv6 [26], but only evaluated the method
on a real-world /24 network as the IPv6 network did not re-
ceive packets. Furthermore, the authors only report on general
trapping durations and not the effects on a worm.

Given the increased difficulty and diminishing returns
of takedowns, tarpits have been recently rediscovered and
suggested as an alternative to contain malware [40], but no
works have identified whether this would work at-scale. As

replacing a single C&C is easy, taking away the foundation
of a botnet is more challenging to replace and might offer
longer-lasting results. From epidemiological evaluations of the
Mirai malware, this might very well work, as researchers
show that the Mirai-malware, which is a large botnet, has
a low reproduction number Ry = 1.0033 and is barely self-
sustaining [20]. If it would be possible to slow down the
infection process with a tarpit significantly, it might lead to a
collapse of the botnet. For this study, we will evaluate the effect
on a botnet in-the-wild, for which the epidemiological results
will be transferable to other botnets. We evaluate whether
we can contain botnets based on Mirai’s scanning [11] and
significantly disrupt the spread and impact of these botnets.

IV. METHODOLOGY

We deploy a two-stage methodology to trap hosts of botnets
that implement a form of stateless scanning. First, we identify
infected hosts by monitoring scanning traffic. Then, we forge
response packets from a centralized host and use these packets
to “trick” an infected device into connecting to our tarpit.

A. Data collection

To identify devices infected by a variant of Mirai, we use
two complementary datasets that are also shown in Figure 1:

1. Network telescope - We use a large network telescope
of approximately 65,000 IP addresses in an enterprise environ-
ment to record scanning attempts. As these IP addresses never
respond, they will only receive Internet scans and backscatter.
Scattered throughout actively used enterprise IP address space,
we find them not to be on the blocklists of Mirai malware [2].

2. Cloud-based honeypots - While the telescope provides an
overview of the infections on the Internet, it does not actively
respond and can therefore not tell which devices would scan
and which would try to brute-force credentials. To differentiate
between these two, we deploy 100 honeypots in the cloud to
monitor traffic on all ports and respond to all telnet traffic on
ports 23, 1023, and 2323. These instances complement the data
collection in the telescope and report infected IPs to the tarpit.

In addition to the sightings at telescope and honeypots,
the tarpit collects a log of all IP addresses using a scanning
routine based on the Mirai source code. Furthermore, it records
connection attempts and raw application-level traces of tarpit-
ted devices. As stated in section II, Mirai scans devices using
TCP SYNs from a session-static source port and recognizes
the return packets by embedding the destination IP address
as the TCP initial sequence number. Distinguishing Mirai-
based scanners from other scanning traffic can thus be easily
achieved. In total, we collected 103 billion connections from
423,810 IP addresses over 35 days in the tarpit and almost two
months in the monitors, providing a total of 28 TB of traffic
across all measurement points. To identify whether a single
tarpit is enough to handle this many concurrent connections,
a second tarpit was briefly activated and collected 4 billion
connection traces. Table I lists the datasets used for this study,
dataset sizes, and in what form they are released.

B. System Architecture

The setup of the entire system is shown in figure 1. Our
network telescope and honeypots forward infected IP addresses

and the corresponding source and destination ports towards
our tarpit, which starts to forge artificial reply packets and
maintains connections to compromised devices. The tarpit is
designed to send out 100 replies per second (at 64 bytes each,
we thus send 6.4 kbps) to infected devices (the motivation for
this will be shown in section VI). It will timeout after the
device has not responded for one minute so that we will send
at most 375 kilobyte towards devices cleaned up after a reboot.

As the tarpit will send 100 packets per second (pps) to
infected hosts and respond to all incoming connections from
infected devices, the system needs to send large amounts of
packets if we aim to address Mirai infections worldwide from
a single device. Raw Ethernet sockets would therefore be too
expensive, as it uses the sendto system call, which performs
a context switch and transfers packets through kernel space.
Similar to [6] we use the PF_RING ZC interface, which works
as a kernel bypass and allows user-space code to access the
NIC directly, eliminating the need for context switches [3].
Bypassing the OS and direct packet injection allows us to
maintain very large numbers of concurrently open connections
from a single device, as we are offloading all connection book-
keeping from the OS. We implemented a simplified TCP stack
in Golang to construct valid responses. The machine running
the tarpit was comparatively moderate, with a quad-core Intel
Xeon E3-1225 from 2011 at a clock speed of 3.20 GHz, a I
Gbps uplink and 32 GB of memory.

C. Tarpitting Strategies

After an infected device opens a connection to the tarpit
due to the crafted SYN+ACK, the goal of the tarpit is to
prolong the connection. Tarpits can work on different layers in
the network stack, for example, layer 4 (Transport) and layer
7 (Application). While layer 4 tarpits keep a network socket
open, applications will not receive any responses and might
therefore timeout. Layer 7 tarpits could trap a connection on
the application layer but require more book-keeping to save
the state of connections. To figure out what type of tarpit is
effective in practice, we cover the possible tarpit strategies and
deploy five response methods that try to trap a device:

1. Only complete the handshake. Evaluating incoming
request takes up processing power. A socket will be tied up
until a timeout occurs, limiting the strain on the tarpit.

2. Send TCP keepalives. The tarpit prevents the OS to
timeout the connection with TCP keepalive packets. This
means that a timeout occurs only at the malware itself.

3. Reply with random data. This method slowly sends
an endless stream of characters over the connection avoiding
special characters such as newlines, null bytes and EOF. An
application reading until it encounters such a special character
will be continuously stuck if no timeout is specified.

4. (Telnet only) Emulate a telnet connection. As a baseline,
we measure how long connections last on a telnet connection.
The first reply in the connection will ask for a username: Sun
OS 5.8 Login: . After a reply, the tarpit will send a password
prompt and responds to every password with a fake shell. The
connection remains open as long as the device desires.

5. (Telnet only) Emulate a telnet connection and reply
with delays. The tarpit again provides an emulated prompt but
delays all responses, including the shell, by 5 seconds.

TABLE I: Datasets used during this study. Data generated by the tarpit and the cloud honeypots will be shared with the community.

Dataset Date (2021) Description

Open sourced Size

Network telescope Feb 19 - Apr 16

required packet header fields
100 honeypots used for:

Cloud honeypots Feb 19 - Apr 16

Set of 65.000 unused IP addresses used to identify infections and

(1) collecting application-level traces on port 23, 1023 and 2323.

List of IP addresses infected

with Mirai-based malware 2GB

Logs and raw PCAP dumps 2 TB

(2) Identifying new infections and required packet header fields

Main tarpit Mar 3 - Apr 8
Extra tarpit Apr 2 - Apr 8
Tarpit & simulator -

Machine used to trap infections identified by honeypots and telescope
Machine used to trap infections identified by honeypots and telescope
Source code of a tarpit and simulator responding to scanning probes

Logs and raw PCAP dumps 24 TB
Logs and raw PCAP dumps 2 TB
Full source code -

D. Could the tarpit be weaponized?

IP addresses can be spoofed, so an adversary might attempt
to make a connection request on behalf of an unsuspecting
victim. Any of the strategies above require first the completion
of a TCP handshake in which we reply with a random ISN,
before we sent out SYN+ACKSs from the tarpit. As a spoofing
attacker could not guess our ISN, the handshake does not
complete and the spoofed IP will never enter our queue and
be considered by the tarpit. Hence, the system will only trap
actual infections and cannot be weaponized by an adversary
against others.

V. VERIFICATION AND ETHICS

After the introduction of the concept and implementation
strategy, we must however first validate and verify before
proceeding that (1) the proposed tarpitting approach is in
practice actually limiting the propagation activity, and (2)
that our methodology does not negatively impair the proper
functioning of infected devices or networks in general, in other
words that we are not launching a denial-of-service on victims
themselves. These two aspects are the focus of this section.

A. Verification of the trapping of infected hosts

The telescope and honeypots provide a real-time view
of infections, but they only serve as monitors. To trap the
malware, we (ab)use the scanning protocol of Mirai and craft
answer packets such that (1) the expected acknowledgement
number in a reply packet is the Destination IP address + 1
and (2) the packet returns the correct, current session port.
Because the malware does not keep a list of scanned IPs, any
SYN+ACK satisfying these two requirements will convince
the infected device that it has found a new potential victim.

The scanning packets captured in the telescope and honey-
pots allow us to find the IP addresses of infected devices and
their randomized source ports on which they are listening. We
can then send a SYN+ACK from any IP towards the infected
device, leading it to believe a new victim is located at this
IP address and open a regular socket connecting to it. The
original Mirai malware (and all variants we observed) allows
for a maximum of 128 concurrent sockets, meaning that every
device can simultaneously brute-force or exploit 128 devices.
A regular tarpit would only block one of these sockets at a
time, as it traps a single socket of the infected device when
found in a scan. By proactively sending out many SYN+ACKs,
we can tarpit all sockets using a single host.

To verify this concept, we infected an IoT device in a con-
trolled environment with the original Mirai malware [2], and

—e— Tarpit Vulnerable device
125 ;

%)
S 100 3
T 2 gl
2 75 = a
S @© \ @©
g 5 5|
c 50 t‘ f ol
[M (=
o) i
o 25 2 :
0 i

0 50 100 150 200 250

Seconds

Fig. 4: Connection trapping against a base version of Mirai.

measured its scanning and brute-forcing activity before and
after we initiate our trapping. Figure 4 shows the number of
brute-forcing connections towards a vulnerable device located
in a network of 20 devices. This means the malware has a
5% chance of discovering the vulnerable device every time
it sends out a scanning probe, which is magnitudes larger
than the probability of finding a vulnerable device during
an Internet-wide scan. The orange line shows the number
of connections that are active towards the vulnerable device
identified by the malware. The blue line shows the number
of connections towards the tarpit, which advertises itself by
forging 100 SYN+ACKSs per second. In this best case scenario
for the malware of 5% discovery chance and without any
connection slow-down, the trapping can already reduce the
amount of brute-forcing by a factor of 20.

B. Ethics: Is our tarpitting impairing users or the network?

While the trapping works as intended, it is essential to
verify that this procedure does not impair the stability or
performance of the device to the end user, and instead only
prevents the spread of the botnet. To test this, we created the
verification setup as shown in figure 5, in which we benchmark
the behavior of four Internet routers, ranging from a $20 budget
device to mid-range home routers.

In our environment, these routers are setup to connect
an end-user to the Internet either via a 100 Mbps or 1
Gbps Ethernet cable and operate the router at its maximum
transmission rate. We connect a high-end router on the Internet
uplink of the infected device that drops the outgoing scan
probes to prevent pollution and links the setup to our tarpit. We
then measure with iperf the performance of the link between
the end user machine and the router’s uplink in terms of packet
loss, latency and throughput, and at the same time monitor the
“health” of the router via its CPU load. This allows us to

Traffic
Src/Sink

Infected
Device ())

Traffic
Src/Sink

Tarpit

Fig. 5: Experimental setup to test for potential impairment of
the router in forwarding capacity, delay and CPU utilization.

—
N
%
|
g
=}

=
o
o
'
o
©

~
wn
\
|
o
)

o
IS
RTT (Milliseconds)

w

o
Start 'trapping’
Stop 'trapping

\
o
[N}

Download speed (MBps)
N
w

o
\
o
<)

0 50 100 150 200 250 300
Seconds since start

(a) Asus GT-AC5300, Gigabit uplink

=
N
w

=
=

A AAM A

=
o

._.
o
o

RTT (Milliseconds)

5.0-

~

w
Start 'trapping=
Stop 'trapping

2.5-

Download speed (MBps)

' ' ' ' '
o N - [=)] ©

0.0-
0 50 100 150 200 250 300

Seconds since start

(b) TP-Link TP-WR841N, 100 Mbps uplink

Fig. 6: Tarpit impact on forwarding speed and latency. The
blue line shows download speed, the orange line packet RTT.

quantify whether either the end user experience is impaired or
the device itself has to process an abnormal workload.

Each router is tested for 300 seconds in the following
scenario. We first establish the iperf connection measuring the
performance of the end user’s connection. We infect the router,
which triggers the device to begin scanning the Internet for
other devices. We record this baseline activity for 100 seconds.
We then activate our tarpit to trap the device at the intensity of
100 SYN+ACKSs per second, identical to the speed we will use
throughout our experiments. This trapping continues for 100
seconds. At second 200 into the experiment, the tarpit shuts
down so that we can monitor for the remaining 100 seconds the
rebound behavior of the router. We perform this experiment for
a variety of routers, ranging from a $19 TP-Link TP-WR841N
budget router with only 32 Megabyte RAM, two mid-range
routers Zyxel VMG8825-T50, a TP-Link AD7200 to a high-
end Asus GT-AC5300. The first two devices have 100 Mbps
Ethernet ports (technically the Zyxel has Gbps, but is capped
at 100 Mbps), the others feature a Gigabit Ethernet interface.

Figure 6 shows exemplarily the download speed and the

round-trip time (RTT) latency of the Asus GT-AC5300 and
the TP-Link TP-WR841N during the course of the exper-
iments. The graphs are depicted separately, as the devices
have different link speeds. As we can already see visually,
the tarpitting at 100 SYN+ACKSs per second has no impact on
the forwarding performance of the router, also the CPU load
does not measurably increase after the tarpit starts and while
it is running. A Kolmogorov-Smirnov test confirms that the
router behavior is not impaired by our trap. While only two
examples are shown, all routers behave identically.

Finally, we have to evaluate a potential impact on the net-
work in which the devices are located, as they have to forward
our tarpit responses to the infected devices. To estimate the
impact, we take a worst-case scenario approach to obtain an
upper bound on the amount of traffic that is forwarded through
a network. Let us consider the most infected AS in the world,
AS4134, in which we have seen a fotal of 125,000 IPs being
infected historically. If we suppose that we would trap all
125,000 devices ever seen concurrently at the tarpitting speed
we utilize in this work, we would send a total of 12 Mbps
towards this AS. This is approximately half of the bandwidth
requirement that would be generated by a single customer
watching a 4K video from a streaming platform. We hence
can consider the additional traffic on ISPs and the Internet
to be negligible, especially considering that by trapping the
infected devices, the compromised device would not generate
further exploitation traffic towards other victims.

We presented the study setup and verification results to
the Institutional Review Board. As the study does not directly
relate to human subjects, they referred us to the data protection
officer. They evaluated the study and found no risk to cause
harm to people and their devices, and raised no objections.

VI. TRAPPING MIRAI IOT INFECTIONS

During the 35 days in which we operated our tarpit, we
observed a total of 423,810 distinct IP addresses scanning and
brute-forcing the Internet using the Mirai fingerprint. These
devices originated from 178 countries and 3,150 Autonomous
Systems. Since its inception, Mirai’s principles have been
adopted by other malware, which also diversified in terms of
targets: we found that in addition to telnet, the diversified Mirai
ecosystem now also targeted 17 other ports. As all of these
malwares rely on Mirai’s scanning routines, our tarpitting is
effective against all of them. While all of these malwares were
captured by our technique, we focus in the following on Mirai
as the largest IoT malware. During our study we successfully
trapped 202,003 (48%) of these IP addresses in our tarpit.

Although we observed hundreds of thousands of infected IP
addresses, the momentary number of infections is significantly
lower: Mirai-infected devices frequently crash and become
available for reinfection [20], furthermore ISPs often dynami-
cally reassign IP addresses — so-called IP churn —, which means
that a unique infection might reappear from a different IP. We
account for IP churn using the methodology in [21] and find
on average 13,298 unique infections on a given day. We de-
signed and executed a series of experiments to understand the
dynamics of the environment and the resulting requirements on
a tarpit. In this section, we report on the success of trapping
these infections with respect to the following questions:

e Steady-state: When the tarpit reaches a steady state,
what is the overall impact on the ecosystem?

e System startup: As devices are trapped when stum-
bling upon a tarpit, how long before effects are seen?

e System retention: As IoT devices are continuously
introduced, restart or churn away, how much agility
is needed in a trapping infrastructure?

A. The impact of a tarpit in steady state

During the entire experiment, we encountered Mirai infec-
tions at 423,810 IPs, of which we were able to trap a total
of 202,003. As discussed above, the number of momentary
infections is much lower, and of the 13,298 addresses infected
on average per day, we were able to trap on average 6,326
(47.5%). In this subsection, we report on the effectiveness of
the infrastructure once the tarpit was fully active, namely when
the telescope and honeypots (see figure 1) fed their sightings
to the tarpit, enticing hacking attempts. In VI-B and VI-C,
we report how long it took to get there and the performance
degradation if we would not keep track of new infections.

Even a single tarpit can tie up the brute-forcing of
thousands of devices. As discussed in section II, Mirai uses
separate routines for finding victims and exploiting them. By
allegedly responding to its scanning probes, our theory was to
tie up a device’s brute-forcing resources so that other concur-
rently identified victims could not be compromised. In practice,
this turned out to be remarkably effective: The original Mirai
source code supports 128 concurrent brute-forcing sockets,
none of the variants we observed have ever increased this limit.
To measure the effectiveness of our infrastructure, we count the
number of brute-forcing connections we can concurrently trap,
figure 7 shows a CDF over all connection attempts made to
the tarpit, showing the average number of new connections per
minute. On average, we see 356 new sockets per minute, 2.8
times the maximum number of connections Mirai can maintain
at a single point in time. As the sockets timeout on either
the OS or in the application itself, the malware immediately
creates a new socket towards the tarpit. This means that when
the duration-before-connections timeout is longer, the number
of sockets created is lower. We find that the duration it takes
for a socket to timeout is indeed inversely proportional to the
number of new sockets created over time. When we combine
our measurements, we see that we trap on average 126.2
threads per infected IP and thus absorb nearly the entire brute-
forcing capability of devices through our tarpit.

All tarpitting strategies are equally effective. As described
in Section 1V, tarpitting could take place at layer 4 or layer 7
using different strategies. Our tarpit supports three application
protocol-agnostic connection handling strategies and two ad-
ditional ones geared towards telnet. Different reply strategies
generally do not increase the time a socket is kept open.
This means that tarpits could be designed much simpler: after
completing handshakes with a SYN+ACK, we can forget about
the connection, limiting the strain on the tarpit itself. The
duration for which tarpit connections last however differs by
protocol, as noted in appendix XI-B.

Devices can be trapped for a long duration until the
network interferes. The success of the tarpit largely depends

—— Open new socket Data packets ——- Duration

1.0 s
wn &
() /'/
7 0.8 -
o /
206 A
2 1 Hour /i1 Day
=04 A
Y= /
o /
. Y
%02 ’/ P2
@) ,.—4”/

0.0 — —

10! 103 10° 10? 104 10°
Avg. per minute Trap duration (seconds)

Fig. 7: CDF of average number of connections per minute for
trapped IPs and the total duration an IP address is trapped.

on the duration for which it can trap devices, as during this
time the device will connect to fewer vulnerable devices.
Figure 7 shows a CDF of the fotal duration successfully
trapped devices spend contacting the tarpit, where 60% of the
IP addresses are only trapped for less than a day and 19%
for even less than one hour. IP-based measurements are often
biased due to ISP’s IP churn [32], where networks forcibly
disconnect customers’ Internet connections and let them rejoin
with a new IP address [35]. The infection would however
persist and reappear at the new IP address. The authors in [35],
[21] show that the bulk of ISPs reset in intervals between 4 and
24 hours, which would heavily skew the distribution as many
churning IP addresses have a short lifetime and can therefore
not be trapped for an extended period. Using the methodology
of [21], we can link Mirai infections before and after a churn
event together and thus estimate the total trapping duration,
which allows us to estimate the effect of IP churn for non-
Mirai infected devices as well. We find that infected devices
are trapped for on average 6 days when accounting for IP
churn. This 6-day timeframe is the average lifetime of Mirai
infections we see active on a particular day. In other words,
if an infected device contacts us and responds to the tarpitting
event, we find that we can keep it trapped in 100% of the
cases until the end of the infection. Once devices fall off our
trap, none of the honeypots ever record any scanning traffic
afterwards from such IP addresses, which means they can hold
onto it entirely and thus neutralize the infection impact.

Clean-up success differs by country, due to ISP archi-
tecture. 1SPs do not only periodically reassign IP addresses,
but they also aggregate multiple customers behind a network
address translation (NAT). NATs keep track of outgoing con-
nections to match responses and forward them to the correct
user. As our tarpit claims to have been contacted by an infected
IoT device, the NAT would have no record of an outgoing
connection and could not forward our invitation to the infected
device. This means that a centralized tarpit could not trap
NATted devices, coming sections revisit this issue.

Due to the differences in how NATs are used and con-
figured in different countries and Autonomous Systems [32],
the effect of our tarpit largely varies between geographical
regions. For example, in the two countries with the largest IP
space [4], the US and China, the share of trapped devices are
respectively 30 and 95%. This is beneficial as Mirai infections
are far more prevalent in China than in the US [20]. The reverse

X ---- Successfully tarpitted
3 \\\ Not tarpitted
\
z N
n 2
o
o \
1 \\ P
N\ -’
S o et T ”,/
0 e e e e S s el
0.0 0.2 0.4 0.6 0.8 1.0

Fraction of scanned IPs bruteforced (telnet)

Fig. 8: PDF of the brute-force attempts on port 23, 2323
and 1023 after a device is found after a scan. Devices that
responded to tarpits show significantly reduced brute-forcing.

effect of network policies is also observed, as some networks
have much higher churn rates than other networks. When a
device is allocated a new IP address, the tarpit must again
learn of its existence. This means that in networks with higher
churn, infected devices are temporarily disappearing from the
tarpit and are thus able to perform their regular operation. In
the US, we find that the successfully trapped devices are much
less likely to churn than devices located in China. The tarpit
traps the US-based devices for more extended periods without
any downtimes when the device is unknown. The effect of this
IP churn downtime is however partially mitigated because of
the brute-forcing queue of Mirai, where it remembers the tarpit
IP address as a vulnerable device even after the infected device
is allocated a new IP. The infected device will then connect to
the tarpit from the new IP address, revealing its presence.

Tarpitting drastically reduces Mirai’s ability to exploit
others. The main goal of the tarpit is to exhaust the brute-
forcing capabilities of infected devices. To understand whether
the tarpit is successful, we can utilize the fact that we cannot
impair the infected devices located behind a NAT and compare
their activity to those we trap. For this comparison, we utilize
the 100 cloud honeypots as a passive listening post to quantify
the telnet brute-forcing attempts from infections.

When the first scan packet from an infected device arrives,
and the tarpit entices it to brute-force, the infected IoT devices
will keep scanning the Internet and eventually reach our
cloud honeypots. We analyze what percentage of the infected
devices attempt to brute-force the cloud honeypot after it was
discovered. Figure 8 shows the Probability Density Function
(PDF) of the brute-forcing attempts made after a scanning
packet is observed in a honeypot, in blue those that responded
to the tarpit, in orange those that ignored our tarpit requests.
To account for the case that both tarpit and honeypot were
concurrently discovered and the brute-forcing was already
about to happen before the tarpit reached the IoT device, the
first 60 sec at the on-set of the tarpit activity are excluded. We
see that the devices trapped in the tarpit are much less likely
to brute-force other devices on the Internet after they discover
potential victims. While for non-tarpitted devices, on average,
84% of the discovered hosts are subsequently brute-forced, for
those trapped by our tarpit, the average is only 17%.

To demonstrate the difference tarpitting makes, let us zoom
into those devices continuously infected during the entire
experiment, which means that we can exclude confounding

*2 00 During experiment After experiment
Ewn
R
— 3
b=]
© 2
oM 200
S v
rTReY
S
d Experiment
[a) 0 end
I N))e) N '))
& jens e o7 o o o
2% Y Y Y Y A Y
fLQ’L rLQ 'LQ /LQ ’LQ ILQ rLQ

Date

Fig. 9: Bruteforce attempts on port 23, 2323 and 1023 by 2,150
long-term infections, during and after tarpitting.

factors such as IP churn. Figure 9 shows the number of
recorded brute-forcing attempts in 3-hour intervals for these
2,150 long-running infections, both outside and inside of a
NAT. The blue line shows the brute-forcing intensity while we
tarpitted infected devices and the red line depicts the intensity
after we released them and continued to monitor for another
week. After the devices were released, the average number
of connections to the cloud honeypots almost immediately
doubles. With about half of the devices shielded behind a NAT
and half affected by the tarpit, we see a total reduction by half
in brute-forcing.

While during the tarpitting the brute-forcing capability of
IoT devices significantly reduces, it does not entirely drop to
zero. The reason is the concurrency between Mirai’s scanning
and brute-forcing threads: while we fill up the brute-forcing
queue with our tarpit as decoy victim, we compete for slots
in this queue with Mirai’s scanning routine. Whenever the
saturated list drops one entry, it is a matter of chance whether
our tarpit’s response or a newly discovered victim enters its
place. When we refer back to figure 4, we already see this
phenomenon in the controlled experiment of our validation.
The solution to this problem is simple though: always have
a packet waiting in line as the queue clears a spot, which is
essentially a question of sending tarpit requests fast enough.
By using the same setup as in figure 4, we find that with 10
times the intensity, we can reduce the number of requests that
slip through by 92% to 127.8 out of 128. While we could thus
eliminate the problem almost entirely, this creates a strain on
the devices already victimized by the malware. In this work, we
limit our tarpit requests to the mentioned 6.4 kbps, or 0.09% of
the average worldwide Internet connection speed [S], which,
as we saw above, already occupies 126.2 threads.

Tarpitting the brute-forcing threads also reduces scan-
ning speed. The main goal of our tarpit is to prevent the
infection of others by filling up the queues of the Mirai
malware, with a volume we specifically designed to be neg-
ligible for an end user’s Internet uplink. A bit unexpected,
though, was that devices in practice also effectively scanned
slower by tying up the brute-forcing functionality. This reduced
scanning across the Internet also implies a reduced probability
of identifying vulnerable devices, which further slowed the
speed of infection. Figure 10 shows the average scanning speed
per IP address in pps before, during, and after the experiment
for port 23 and port 5555. For port 5555, the average scanning
speed nearly halves from an average of 2,872 pps to 1,516 pps,

—— Before experiment

1.0

During experiment —— After experiment

0.8
w 0.6
o
“o.4
0.2
0.0
102 10® 10* 10° 102 10° 10* 10°
Scanning speed (Port 23) Scanning speed (Port 5555)

Fig. 10: CDF of (estimated) scanning speeds in packets per
second before, during and after our experiment for two ports.

TABLE II: Effect of the tarpitting experiment on scan speed.

Port #IP PPS (normal) PPS (tarpit)
Telnet: 23 150,661 8,498 7,617
RSFTP: 26 3,171 9,545 4,280
HTTP: 80 1,299 8,007 2,755
Telnet - alt: 1023 3,413 1,573 543
Telnet - alt: 2323 26,463 4,706 3,884
ADB Worm: 5555 10,347 2,872 1,516
Overall 174,167 7,822 7,105

for port 23 it declines by 10% from 8,498 to 7,617 pps. Table II
lists the measured effects on the scanning speed across the
ecosystem during the tarpitting experiment. This decrease in
scanning speed results in vulnerable devices being less likely
to be identified, slowing down malware spread. As we see
the scans from infected bots decrease more quickly than the
decrease in the number of bots, we can attribute the reduction
to our tarpit eating up computing cycles in the Mirai malware
that would have otherwise gone to scanning. Appendix XI-A
investigates the reduction in scanning speed per AS in more
detail, where we can see that we have a positive impact on
approximately 60% of networks in the Internet.

One tarpit slows world-wide Mirai infections by 21%. As
discussed above, the tarpit proved highly effective in trapping
Mirai instances when they were accessible from the Internet.
While effectivity could be further increased by sending more
requests from the tarpit, we could significantly decrease both
scanning and brute-forcing speeds of infected IoT devices,
which means that it will take more time for the malware to find
potential victims and infect them. Although only 48% of all
infected devices responded to our requests, the tarpitting still
significantly affected the worldwide Mirai ecosystem. When
tracking the number of infected devices and the average time
between infections (as IoT devices fairly often crash and are
reinfected later [20]), we see that during our tarpitting, the
average re-infection interval increased from 12.1h to 14.6h.

We can assess the slow down we accomplished by mea-
suring how long it would take a random IP in the telescope to
become infected by a compromised device before our tarpitting
and during, and therefore measure the reduced propagation
ability of Mirai as a whole. Even when reaching only half
of all Mirai instances worldwide, a single tarpit would thus
slow down the malware spread by 21% after locking up almost
half of the brute-forcing capabilities in the ecosystem. The re-

infection rate drops less than the brute-forcing capacity due to
the saturation of the ecosystem where most victims are already
infected and the botnet’s brute-forcing power, thus being higher
than the total power needed to infect every other device.

B. System startup: How long before we achieve these effects?

To measure the time it takes the tarpit to reach a steady-
state and the time it takes for the measurement infrastructure to
capture devices, we completely disable and start up the tarpit
three times starting from March 23. On average it takes the
tarpit about a day to start up and reach the steady-state, where
we have seen all Mirai infections at least once. To identify
the effect that the size of the measurement infrastructure has
on the performance of the tarpit, we take random samples
of our network telescope and average over 20 samples. We
find that the decrease in devices trapped in the tarpit is not
proportional to the size of the measurement infrastructure, as
2,500 honeypots identify almost 60% of the devices observed
by 65,000 honeypots in the same time span. The difference
in trapped devices also fades over time as a large network
observes all infected devices, and smaller networks are still
identifying new devices. While a large network would thus be
faster in identifying the infections, a smaller network would
still be suitable for identifying and trapping a botnet.

C. System retention and scaling constraints: how much agility
is needed in practice?

The Mirai ecosystem is highly volatile and although there
are a plethora of vulnerable devices, only a small percentage
is infected at any given point. This poses the obvious question
of whether this high volatility impacts the performance of the
tarpitting. If we would not continuously feed updates into the
tarpit, how much would the trapping degrade?

Our experiment uses the input from a network telescope
with approximately 65,000 IP addresses to discover infected
devices. When the tarpit reaches a steady-state, where on
average 6,326 hosts are trapped, such large collection system
might not be needed and might instead rely on a small
set of monitoring points to remain in a steady state. To
identify whether this retention exists, we conduct two separate
experiments where we eliminate a large portion of monitoring
IPs. In the first test on March 7, only 1,000 IP addresses
instead of 65,000 were used to monitor for newly infected
devices. As shown in Figure 11 the number of trapped devices
gradually decreases, mainly due to IP churn where devices are
still infected but moved to another IP. In the steady-state of this
degradation, the tarpit trapped 4,613 devices, 27% less than
the tarpit monitoring 65,000 IPs. Thus it would, in principle,
be realistic to jumpstart a tarpit with a lot of IP addresses
and maintain a reasonable performance with a much smaller
installation. In our second test on March 17, only 100 cloud
instances were used for monitoring. While still some new
devices were identified, a large portion of devices disappeared
from the system. The steady-state of the tarpit with only 100
monitors lies at 2,318 trapped devices. The system’s retention
is mainly influenced by IP churn, where devices leave the trap.

Finally, as a single tarpit reduces Mirai infections by 21%
as 103 billion connections hit it, is the containment of Mirai
just a question of scaling out? While our four-core server on

—— Total
Retention test March 7

Not responding

07500
1%}
%]
gsooo
©
©
2.2500
|
5 4 o A 5 5 1 5
\,939 A > 3 > A > A > A > 3 > A >
P LA LI COgE LG LG LG A\

Retention test March 17

Open new socket
Startup evaluations

Date

Fig. 11: Timeline of the experiments running from March 3 - March 20 and March 23 - April 8 showing the trapped IP addresses
per minute. A fraction of the IPs that were sent SYN+ACK never respond. The vertical lines indicate when we tested the retention,
startup time, and tested for network congestion through a second tarpit.

Potential
Victim)

injection

raw socket

Compromised E Traps. Layer
T L Device () . Layer
?
——— = y Layer

Fig. 12: Mirai sends and receives with a raw socket, which
means that return packets are processed by OS and malware.

Tarpit

a Gigabit uplink is never saturated on CPU load or uplink
capacity, it might be that the large volume of packets leads
to packet drops further upstream. To learn about potential
upstream limitations, we added a second tarpit to load-balance
trapping activity. As shown in the last part of figure 11, a
doubling of the infrastructure increased the number of trapped
devices by 5%. The tarpits received more response packets
from successfully trapped devices, where more devices send
application layer data. There is a slight but statistically sig-
nificant increase in the number of devices trapped per minute
(R=1.02, p<.05). The effect on the containment as a whole is
however marginal, thus the single tarpit was not held back.

VII. REACHING THROUGH NATS AND FIREWALLS

The problem we faced with trapping devices behind NATs
results from the Mirai’s connection handling. As the author
intended to scan the Internet as fast as possible, Mirai does not
use regular network sockets of the OS to establish connections
but directly crafts and injects TCP/IP frames utilizing raw
sockets. This allows the malware to scan the Internet at
speeds otherwise impossible. This bypassing of the regular
OS networking stack for outgoing packets means that return
packets are received by both the malware and the networking
stack of the OS. To see how this creates an issue for a NAT, let
us first consider a malware connected directly to the Internet.

As shown in figure 12, Mirai would scan the Internet with
TCP SYN packets via a raw socket to find victim devices.
When a reply arrives, the TCP SYN+ACK response (in green)

10

would be received by Mirai as well as the operating system.
Mirai adds the destination to its brute-forcing queue, but the
OS would not know how to treat this SYN+ACK, having
never sent a SYN request to the destination. The TCP protocol
mandates the OS to respond with a TCP RST [27], asking the
remote party to tear down this connection. When infected IoT
devices are directly connected to the Internet, this does not
pose any problem, as Mirai would initiate several new brute-
forcing connections shortly afterwards. When our tarpit floods
Mirai with alleged SYN+ACKSs, these connections would be
unknown to the OS, but Mirai still takes note of them.

An issue however occurs when Mirai is located behind a
network appliance such as a NAT or firewall. These devices
usually keep state, and when a NAT or firewall receives the
TCP RST from the host OS, it will take note of this unwanted
traffic and in the future block packets from this IP address
to the IoT device. For regular Mirai operation, this is not a
problem because soon Mirai’s brute-forcing threads open new
connections and the NAT will again allow this traffic through.
This is however an issue for tarpitting because we can only get
tarpitting requests into the brute-forcing queue until the IoT’s
OS has returned a TCP RST and the network device shuts
off the connection. While tarpitting in principle also works for
NATted hosts, the window for trapping is limited.

To investigate this window, we experimentally test how
many packets will be allowed through three different NATS
before they shut off incoming traffic: two standard consumer
home routers with NAT functionality, (1) a Zyxel VMG8825-
T50 router and (2) a Fritzbox 7590, as well as (3) a Carrier-
grade NAT of a large telecom provider for mobile Internet. A
SYN packet is sent out from a device located behind the NAT
to a tarpit in the experiment. The tarpit then responds with 128
SYN+ACKs, varying the speed between 25 and 1000 packets
per second. This allows us to measure the typical processing
time window of these devices.

Surprisingly, both the NAT on the Zyxel router and Carrier-
grade NAT ignored the device’s RSTs. In such non-compliant
TCP implementations, the NAT would remain open and allow a
tarpit to trap devices indefinitely. The NAT on a Fritzbox 7590
correctly closed on a TCP RST, leaving only a tiny window to

send packets. We empirically find that the NAT closes after
around 850 milliseconds of receiving the first SYN+ACK.
While we can still trap all brute-forcing threads in a device
behind this NAT, this tarpitting is only active for a limited
time depending on our speed of SYN+ACKSs and how large
the brute-forcing queue of the infected device is. This behavior
and the non-compliance of devices to the TCP specification
explains why we still obtain some effect even in networks that
utilize NATs.

VIII. CAN DISTRIBUTED TARPITS ERADICATE BOTNETS

FROM THE INTERNET?

Middleboxes such as NATs and firewalls not only shut
off a connection if the internal device responds with a TCP
RST, they also keep a state of the outgoing and incoming
connections. This is necessary because an Internet Service
Provider might connect hundreds of customers using a single
public IP to the Internet. When the customer connects to the
outside, the Carrier-Grade NAT (CGNAT) records this request
and later matches the response to forward it to the correct
host. This is however a significant problem for tarpit operation:
as we would have learned about an infected device from a
honeypot, the brute-forcing invites from the tarpit towards
the Mirai infection could not be matched in the CGNAT
to a previous flow and thus would be discarded. For this
reason, about half of the Mirai infections we observed in
our experiments never ended up brute-forcing. In a sense,
Mirai infections behind a NAT are therefore immune. However,
the solution is trivial: do not only brute-force from a central
location, but also respond to brute-forcing attempts from other
honeypot locations when they are contacted. As each of these
return flows can now be matched, every honeypot increases our
leverage on Mirai infections and slightly reduces the spread of
the malware.

To evaluate the feasibility of this approach and evaluate
the number of instances required for potential eradication, we
implemented a discrete-event simulator, which we calibrated
based on the earlier experimental results. The framework
simulates and predicts the scenarios presented before and will
be shared with the community after publication.

A. Simulator design

Mirai is a collection of independently acting endpoints.
The most logical approach for a simulation is an agent-
based, discrete event simulation where all infected devices
are autonomous, independent entities. Previous work has used
similar modeling to test defense methods against, for example,
botnet-based DDoS attacks [29], and a similar method can
be used to simulate the spread of a botnet. We assume a
Susceptible-Infected-Susceptible (SIS) model, where devices
return to the pool of vulnerable devices after they have been
rebooted or cleaned up. For Mirai, this is a valid assumption,
as we observe devices to become reinfected frequently.

In each time step, every agent generates a number of
scanning probes and infects newly found vulnerable devices.
We randomize the scanned destinations using the randomiza-
tion method of the Mirai source code. Behind an IP address,
a device can locate other agents, honeypots, or vulnerable
devices. If an agent encounters a honeypot, it will enter a

11

Devices observed --+- Simulated observed
Not responding --+- Simulated not responsing
Trapped --e- Simulated trapped
'J‘,,.maf/w S = Yo
«n 6000 ' S i
O] s
wn F o
(%] /I,’.
g 4000 $7
° "4
© Y
o 2000
i . P
0 é
0 500 1000 1500 2000 2500 3000 3500 4000

Simulation ticks

Fig. 13: Simulation of the system on the experiment.

“trapped” state that reduces the likelihood of infecting other
devices. If it finds a vulnerable device, the agent will try to
infect it, remain blocked for several time-steps to simulate the
brute-forcing, and succeed with some likelihood.

In a tarpit scenario, there are two ways for an infected
device to leave the “trapped” state: the device can be (1)
cleaned up, or (2) IP churn changes the IP address of the
device, which makes it unreachable for the tarpit so that the
device needs to be detected again by a honeypot. A percentage
of devices can also be placed behind a NAT, where adversaries
can infect these devices, but it is not possible for the tarpit
to address these devices and subsequently trap them. The
simulator supports all three aspects, and we will evaluate these
variables in the following. Table III lists all parameters used
for the simulation, as well the experimentally measured value
from section VI.

B. Simulation validation

To validate the simulation framework, we perform an
agent-based simulation of the Mirai ecosystem with one tarpit,
based on parameter values that we experimentally measured in
section VI and previous work. We are particularly interested in
two aspects during validation: first, does the agent-based sim-
ulation reproduce the same characteristics we experimentally
measured in the steady-state in section VI-A, and second, does
it also match the significantly more sensitive transient state
when the system is initialized and scales up in section VI-B?

Figure 13 shows an excerpt of our simulation result to-
gether with the measured experimental results from initiali-
zation until steady state. The experimental measurements are
smoothed using a rolling average of 20 data points to allow
for easier readability. The figure shows similar proportions of
devices we can trap and those that evade tarpitting, and we see
especially in the dynamic scaling a close match. A two-sample
Kolmogorov-Smirnov test confirms the similarity as we cannot
reject the null hypothesis with p > 0.1.

C. What is needed to eradicate a botnet?

Given this simulator, we can now evaluate the sensitivity of
the Mirai botnet to those parameters that we cannot change in
the real world through our experiments, namely the prevalence
of NATs and IP churn, in other words the percentage of

TABLE III: Parameters of the agent-based discrete-event simulation

Parameter Name Description

Experimental value (Sec. VI)

1. Vulnerable devices Total number of devices on the Internet vulnerable to infections 13,298
2. Honeypots Number of honeypots on the Internet monitoring the botnet and trapping infected devices 65,000
3. Infected devices Initial amount of infected devices at the start of the simulation (randomly chosen from the vulnerable devices) 100%
4. NATted devices Number of the vulnerable devices behind a NAT and thus “immune” against the tarpit 40%
5. Average scan rate Number of packets sent per average per tick, proportional to the spreading rate 15,000
6. Churn rate Probability that IP churn occurs on an IP per simulation step 0.05%
7. Cleanup rate Probability that an infected device is cleaned up and becomes “vulnerable” again 0.02%
8. Blocked time Number of ticks an agent is blocked having identified a vulnerable device and is thus brute-forcing it 1
9. Infection probability ~ Likelihood that a brute-forcing is successful and leads to an infection 90%
10. Time steps Number of ticks for which the simulation is run. 4,000
11. Trapping start Time step at which the trapping starts, giving the infection time to spread before the tarpit is initialized. 0

devices hidden behind address translation and the turnover of
IP addresses which influences how long devices are turned
loose before a tarpit captures them again.

“Immunity” through NATs. Devices can be immune to
a centralized tarpit behind a NAT if it drops unsolicited
SYN/ACKs. These infected devices will however remain in
operation and keep infecting others. In the experiment, we
capture all detected devices that are not behind a NAT, but
the ecosystem remains steady as there are too many immune
systems. Running a tarpit directly on a honeypot would how-
ever solve this issue: packets will go through the NAT and
reach the device because the connection was instantiated from
the device behind the NAT. When we simulate a scenario
where there are thus no devices immune to the tarpit, all
attacking threads are captured after a device is identified. When
honeypots are traversing the NAT themselves after observing a
scanning packet from a device, we find that tarpits consisting of
only 1,000 devices can effectively mitigate botnets consisting
of 100,000 devices.

When devices are placed behind a NAT and honeypots
cannot reach them, we find that the system will not trap every
device that is located outside a NAT. Depending on the number
of devices that “break free”” due to IP churn or device cleanups,
there is an equilibrium where as many devices are trapped
every tick as there are devices that are leaving this state. An
example of this is shown in Figure 13, where 60% of the
devices are not behind a NAT and could therefore be trapped,
but only 49% are trapped in the tarpit. Immunity to the tarpit
from some parts of the ecosystem thus also affects the other
devices in the ecosystem, which will not all be trapped.

Permanent tarpit vulnerabilities. Our system needs to
continuously contact an infected device to work. Trapped
devices can thus break free when a network operator churns
the IP addresses in the network. As other research has shown,
there are also tarpit vulnerabilities in malware itself that can
permanently block a thread of the malware [40]. When a
permanent vulnerability is found and exploited to block all
malware threads using the method shared in this work, a device
contacting a single honeypot can be permanently trapped.
Our simulations show that in such a case large botnets could
be completely eradicated already using a small number of
honeypots. We perform different simulation experiments using
various honeynet sizes based on a scenario where tarpit vulner-
abilities are permanent and also lock up a device behind a NAT.
While these simulations are performed using 50,000 vulnerable
devices, this number does not influence the simulations much,

12

as an increase in infections will also increase overall Internet
scanning, making it more likely for the honeypots to find an
infected device. Overall it takes a honeynet consisting of only
1,000 devices 3 days to trap 80% of all infections.

Reducing the speed of infection spread. Walla and Rossow
note that a tarpit can be very effective in slowing down
infection spread from a device [40]. While one device can
be significantly impaired and therefore be slowed down, the
effects of such slowdowns on the entire ecosystem are not
yet known. We simulate a botnet scenario where 1% of the
vulnerable population is infected at the start and a tarpit is
active, aiming to disrupt the botnet from spreading through the
network. We find that in practice, the effect of this slowdown
is marginal as a botnet grows exponentially, and a device has
to be observed by the tarpit network first before the slowdown
occurs. Suppose the number of vulnerable devices is larger
than the size of the tarpit. In that case, infected devices have
a higher chance of finding and infecting a new device than
ending up in the tarpit, keeping the infection spread alive.
In our simulations, we find that when using a tarpit network
of 100 devices, the infections reach their highest point after
1,424 ticks, whereas a tarpit of 1,000 devices would slow the
infection spread such that the highest point is reached after
1,577 ticks. Only a tarpit consisting of more honeypots than
the number of vulnerable devices would slow the tarpit down
enough to remove the infection from the Internet immediately.

Cleanup rate. If a device is cleaned up by an operator or
loses the infection due to a device crash or reboot, it will be-
come vulnerable again if no additional action is taken to secure
the device. While it is a good thing that infections are removed
from the ecosystem, the cleanup rate of systems counter-
intuitively slows down the tarpitting efforts significantly as
devices can be cleaned up when they are in the “trapped”
state and become vulnerable again to malware infection. In
our simulations, we have used an average cleanup rate of 7
days. However, when decreasing this rate to once every day,
the system cannot trap all devices anymore depending on the
scanning speed of the malware, the size of the honeynet, and
the amount of vulnerable devices. Thus, in this case, the tarpit
would only be effective in slowing down the spread of the
infections. When operators however secure their systems after
cleanup, a tarpit network contains the spread of the malware
and will eventually eradicate the malware.

IX. DISCUSSION

Can we clean up the Internet with a pit of tar? Although it
sounds a bit counter-intuitive to take on botnets bottom-up by

spinning up decoy victims, in practice, this turns out to be an
effective strategy against self-propagating malware, especially
as C&C takedowns are getting increasingly tricky and provide
diminishing downtimes. Tarpits have been known for a while
but mainly were overlooked to address the threat of botnets,
and to this date, there has surprisingly not been a study that
evaluated their merits at scale.

A. Community Tarpits

Even though NATSs are somewhat of a deterrent in theory,
their impact is much less pronounced in practice. First, we
can easily scale out so that the individual honeypots not only
monitor but respond. As SYN+ACK flows of 6.4 kbps already
trapped 98.5% of Mirai’s brute-forcing threads, such a scale-
out would require trivial resources and not impair the Internet
connectivity of organizations or volunteers operating such a
device. Second, even if we ignore immune devices, those
trapped are missing in the further propagation. At a reproduc-
tive rate Ry = 1.0033, this is already enough to contain Mirai,
even though we cannot fully eradicate it, as infected pockets
behind NATs continue to jump-start the infection. Lastly, we
have seen that implementations can be faulty and allow us
to punch through with many packets, not just single ones.
Together with the stateless scanning now prevalent in port
and vulnerability scanning, this gives an exploitable edge even
in single tarpit scenarios. As we can frequently get at least
one packet through a NAT, it would be possible to turn the
tables entirely. Walla and Rossow [40] developed an automatic
toolkit to discover vulnerabilities in malware that will cause
the software to lock up. Combined with our tarpit at scale,
such vulnerabilities would further amplify our impact. Given
a permanent vulnerability, even a tarpit infrastructure of trivial
size could scale a botnet down.

The easiest route forward — and the one that malware
authors could not adapt to — would be to democratize botnet
cleanup. Given that enough devices participate — where the
required number is low enough that this could be done as
a community project —, it will be possible to contain and
eliminate this threat platform that has significantly heightened
the Internet threat landscape in the past years. We release a
flexible, turn-key honeypot/tarpit solution as open-source to
leverage this insight. Organizations and individual volunteers
can run their part of a botnet sinkhole on spare devices, re-
quiring minimal resources from the hardware and the network.
We provide this platform as part of this work, and we invite
others to join this effort. Given a low entry barrier and a clear
path towards mitigation, it will be possible to accomplish this
jointly. The software and related documentation is provided at
https://www.malwaretarpit.com.

B. Honeypot Evasion

As the tarpits were highly effective in containing Mirai,
would it not be logical for adversaries to simply change the
source to evade being trapped and make this effort futile? As it
turns out, this would not be trivial to do without fundamentally
changing how Mirai finds its victims. Let us look at three
strategies for handling connection parameters.

Case 1. Current Mirai. Recall how Mirai picks a session-
static source port and sets the ISN as the destination IP, and

13

verifies this relationship for the returned SYN+ACKs. This
means that the source port is randomized but used for all
destination IP addresses. A honeypot that operates at IP a can
inform the tarpit at IP b about the used setting, so that it can
reply with ACK# = b as the expected fingerprint. This is the
current operating principle of our system.

Case 2. Randomizing connection parameters. Obviously,
this randomization could be extended to all other connection
parameters. If an ISN is randomly generated and verified like
the random source port, the same reasoning as in case 1)
applies. Honeypot a would tell tarpit b the currently used ISN,
and trapping of bots would also succeed.

Case 3. Keying parameters with a secret. The most chal-

lenging case would be if parameters would be keyed with a
secret, for example ISN = hash(secret + destIP + time). Here
if a connection attempt is made at a and honeypot a forwards
this information to tarpit b, b could not trap the infected device,
as SYN+ACKSs from b would be identified as invalid responses
and we could not infer the key.
This situation is however identical to the case of NATs. If
an infected device behind a NAT connects to honeypot a,
we cannot respond to the NAT’s public IP address from b,
as the NAT does not have any record of a prior connection
attempt from one of its clients to b and cannot therefore route
back the answer. A single, centralized tarpit cannot reach
infections behind a NAT. As a solution, we introduced the
community tarpits for which show that already a low number of
volunteers would be able to eradicate Mirai. These community
honeypots will also address case 3). If a Mirai instance contacts
a community honeypot with a keyed ISN and random source
port, the community endpoint responds and traps this particular
device locally as it has a valid ISN and keeps getting new
ones due to its tarpitting activity. As we show in the paper, if
a device can be trapped, it stays trapped until the end of the
infection. The community component therefore addresses also
this advanced situation.

What could the adversary otherwise do to evade our
system? Basically, it would be necessary to randomize and key
connection parameters and keep track of probes and responses,
which requires the software to save state per outgoing SYN,
for 232 possible IP addresses. The scanner routine could send
randomized probes, count how many it has sent to a particular
destination, match responses, and discard any SYN+ACKSs not
related to previous requests. This book-keeping will result in
significant overhead and slow downs. Connection-based scan-
ning is what scanners traditionally used, but was superseded
over the past decade by state-less scanning to realize speed
and complexity advantages. This would need to be undone.

X. CONCLUSION

Taking down a botnet is generally done by removing or
taking over the botnet’s C&C server or by arresting the perpe-
trators behind the botnet. These measures become increasingly
complex as botnets use sophisticated means to hide or make
their infrastructure more resilient. In this paper, we evaluate a
possible alternative whether a collection of farpits can be used
to contain malware, and we find that even with one device of
minimal requirements on CPU and bandwidth, the propagation
can be significantly slowed down, and complete containment
of these threats is within reach.

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

[Online]. Available: https://labrea.sourceforge.io/Intro-History.html
[Online]. Available: https://github.com/jgamblin/Mirai-Source-Code
[Online]. Available: https://www.ntop.org/products/packet-capture/pf_
ring/pf\ _ring- zc-zero-copy/

[Online]. Available: https://worldpopulationreview.com/country-
rankings/ip-address-by-country

[Online]. Available: https://www.fastmetrics.com/internet-connection-
speed-by-country.php#average- speed-internet

D. Adrian, Z. Durumeric, G. Singh, and J. A. Halderman, ‘“Zippier
zmap: Internet-wide scanning at 10 gbps,” in 8th USENIX Workshop
on Olffensive Technologies (WOOT 14). San Diego, CA: USENIX
Association, Aug. 2014. [Online]. Available: https://www.usenix.org/
conference/woot14/workshop-program/presentation/adrian

T. Alladi, V. Chamola, B. Sikdar, and K.-K. R. Choo, “Consumer
iot: Security vulnerability case studies and solutions,” IEEE Consumer
Electronics Magazine, vol. 9, no. 2, pp. 17-25, 2020.

L. Alt, R. Beverly, and A. Dainotti, “Uncovering network tarpits
with degreaser,” in Proceedings of the 30th Annual Computer Security
Applications Conference, 2014, pp. 156-165.

D. Andriesse, C. Rossow, B. Stone-Gross, D. Plohmann, and H. Bos,
“Highly resilient peer-to-peer botnets are here: An analysis of gameover
zeus,” in 2013 8th International Conference on Malicious and Un-
wanted Software:” The Americas”(MALWARE). 1EEE, 2013, pp. 116—
123.

M. Aunisetti, C. Ardagna, M. Cremonini, E. Damiani, J. Sessa, and
L. Costa, “Security threat landscape.”

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the mirai botnet,” in 26th USENIX security
symposium (USENIX Security 17), 2017, pp. 1093-1110.

A. A. Antonopoulos, K. G. Stefanidis, and A. G. Voyiatzis, “Fight-
ing spammers with spam,” in 2009 International Symposium on Au-
tonomous Decentralized Systems. 1EEE, 2009, pp. 1-5.

H. L. Bijmans, T. M. Booij, and C. Doerr, “Just the tip of the
iceberg: Internet-scale exploitation of routers for cryptojacking,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 449—-464.

K. Borders, L. Falk, and A. Prakash, “Openfire: Using deception to
reduce network attacks,” in 2007 Third International Conference on
Security and Privacy in Communications Networks and the Workshops-
SecureComm 2007. 1EEE, 2007, pp. 224-233.

D. Dittrich, “So you want to take over a botnet...” in 5th USENIX
Workshop on Large-Scale Exploits and Emergent Threats (LEET 12),
2012.

Z. Durumeric, M. Bailey, and J. A. Halderman, “An internet-wide
view of internet-wide scanning,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 65-78.

Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast internet-
wide scanning and its security applications,” in 22nd USENIX Security
Symposium (USENIX Security 13), 2013, pp. 605-620.

C. Gafidn, O. Cetin, and M. van Eeten, “An empirical analysis of
zeus c&c lifetime,” in Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security, 2015, pp. 97—
108.

H. Griffioen, T. M. Booij, and C. Doerr, “Quality evaluation of
cyber threat intelligence feeds,” in International Conference on Applied
Cryptography and Network Security (ACNS), 2020.

H. Griffioen and C. Doerr, “Examining mirai’s battle over the internet of
things,” in ACM Conference on Computer and Communications Security
(CCS), 2020.

——, “Quantifying autonomous system ip churn using attack traffic
of botnets,” in Proceedings of the 15th International Conference on
Availability, Reliability and Security, 2020, pp. 1-10.

J. Healey, N. Jenkins, and J. Work, “Defenders disrupting adversaries:
framework, dataset, and case studies of disruptive counter-cyber op-
erations,” in 2020 12th International Conference on Cyber Conflict
(CyCon), vol. 1300. IEEE, 2020, pp. 251-274.

14

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

(391

[40]

H. Heo and S. Shin, “Who is knocking on the telnet port: A large-scale
empirical study of network scanning,” in Proceedings of the 2018 on
Asia Conference on Computer and Communications Security, 2018, pp.
625-636.

S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin, “Mea-
surement and analysis of hajime, a peer-to-peer iot botnet,” in Network
and Distributed Systems Security (NDSS) Symposium, 2019.

N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, “Botnet in ddos
attacks: trends and challenges,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 4, pp. 2242-2270, 2015.

K. G. Hunter, “Scaling network tarpits for ipv6,” Naval Postgraduate
School Monterey, CA United States, Tech. Rep., 2018.

P. John, “Transmission control protocol,” RFC 793, 1981.

C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80-84, 2017.

I. Kotenko, A. Konovalov, and A. Shorov, “Simulation of bot-
nets: Agent-based approach,” in Intelligent Distributed Computing IV.
Springer, 2010, pp. 247-252.

J. Lathrop and J. B. O’Kane, “A case study in opportunity reduction:
Mitigating the dirt jumper drive-smart attack,” in 2014 IEEE Joint
Intelligence and Security Informatics Conference. 1EEE, 2014, pp.
224-227.

D. Moore, C. Shannon, and K. Claffy, “Code-red: a case study on the
spread and victims of an internet worm,” in Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment, 2002, pp. 273-284.

G. C. Moura, C. Gandn, Q. Lone, P. Poursaied, H. Asghari, and M. van
Eeten, “How dynamic is the isps address space? towards internet-wide
dhcp churn estimation,” in 2015 IFIP Networking Conference (IFIP
Networking). 1EEE, 2015, pp. 1-9.

Y. Nadji, M. Antonakakis, R. Perdisci, D. Dagon, and W. Lee, “Behead-
ing hydras: performing effective botnet takedowns,” in Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications
security, 2013, pp. 121-132.

J. Nazario and T. Holz, “As the net churns: Fast-flux botnet ob-
servations,” in 2008 3rd International Conference on Malicious and
Unwanted Software (MALWARE). 1EEE, 2008, pp. 24-31.

R. Padmanabhan, A. Dhamdhere, E. Aben, K. Claffy, and N. Spring,
“Reasons dynamic addresses change,” in Proceedings of the 2016
Internet Measurement Conference, 2016, pp. 183-198.

A. Pathak, F. Qian, Y. C. Hu, Z. M. Mao, and S. Ranjan, “Botnet spam
campaigns can be long lasting: evidence, implications, and analysis,”
ACM SIGMETRICS Performance Evaluation Review, vol. 37, no. 1, pp.
13-24, 20009.

S. Pletinckx, C. Trap, and C. Doerr, “Malware coordination using the
blockchain: An analysis of the cerber ransomware,” in 2018 IEEE
Conference on Communications and Network Security (CNS). IEEE,
2018, pp. 1-9.

A. H. UW, Y.-K. Liu, and A. R. UW, “Counter-attacks for cybersecurity
threats,” 2005.

K. Vaniea and Y. Rashidi, “Tales of software updates: The process of
updating software,” in Proceedings of the 2016 chi conference on human
factors in computing systems, 2016, pp. 3215-3226.

S. Walla and C. Rossow, “Malpity: Automatic identification and ex-
ploitation of tarpit vulnerabilities in malware,” in 2019 IEEE European
Symposium on Security and Privacy (EuroS&P). 1EEE, 2019, pp.
590-605.

XI.

A. Impact of tarpitting on Mirai’s scanning speed

APPENDIX

The overall reduction in Mirai’s activity is not a result of
merely containing a small share of highly active bots, but
a reduction of its activity across a significant share of the
Internet. Figure 14 displays a cumulative density function of
the fraction of scanning speeds encountered by AS during
tarpitting. We see that while 40% of ASse are unaffected due
to their wide usage of CGNATs, for the remaining 60% drastic
reductions apply. For 20% of all autonomous systems in the
Internet, the scanning speed per AS is reduced to 0.3 (or 30%)
of its pre-tarpitting activity, and for about half of the trappable
ASes their activity is reduced by 50% or more.

1.0

0.0
0.0 0.2

Fig. 14: CDF of the fraction of the scanning speed per AS
while the tarpit is active opposed to its normal scanning rate.

0.4 0.6 0.8 1.0

B. Effect of different tarpitting strategies

While the type of tarpitting (such as sending TCP
keepalives or replying with random data) does not have any
measurable impact on the connection duration, the duration of
a connection to the tarpit greatly differs between protocols. For
example, connections from malware targeting port 23 usually
last longer than half a minute, while connections to port 445
are closed within 10 seconds regardless of the type of reply
sent. For port 80, only completing the handshake even traps
the median connection longer than other strategies as the client
waits for data and hangs up on unexpected data. A notable
exception is port 5555 (Android Debug Bridge), where sending
random data increases significantly the duration of connections
to the tarpit. Figure 16 shows CDFs of IP addresses for the
average connection duration split on different ports.

Response method

—— During experiment

After experiment

200 NATTED ASes
100
)
o
Sp
g 8 0 Experiment
X 1
gi end
g _ 40 ASes without NAT
S
L >
1
2
(2} 20
. o
) 1) N @ S
\,,03‘6 \:0,5,\« \,,03‘1 \,,0“‘0 yo“’g yob‘x
S S* S S S* S
Date

Fig. 15: Brute-forcing attempts during and after tarpitting, for
autonomous systems without NATs and those utilizing NATS.

This dependence on the usage of NATs becomes even more
visible when we revisit the results from figure 9 within the
context of those ASes where we find evidence of the usage
of CGNAT and those without. Figure 15 splits the results
from figure 9 in these two groups. While it is clear that in
autonomous systems with a NAT our tarpit has almost no
effect, in those without a NAT the outcome is drastic. After
the startup of the tarpit, new brute-forcing attempts almost
vanish, with the exception of newly infected hosts until they
are discovered by our infrastructure.

1 =-=2 =23 =—4 ==-5
Port 23 Port 80
1.0
"
[}
7 0.8
g
So06
[°]
£04
G
w 0.2
a
U)l
0.0
10! 103 10° 10! 102
Port 445 Port 5555
1.0 1.0 e+ —
0 r 7
n 0.8 0.8 | /
o |
3 06 0.6 B
© | /
E 04 0.4 | 1/
N !
. , |
& 0.2 0. [/
@) J .
0.0 0.0 =~
10! 103 10! 103

Average connection duration

Fig. 16: Effect of different tarpit strategies on different ports.

15

