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ABSTRACT
In order to stay undetected and keep their operations alive, cyber
criminals are continuously evolving their methods to stay ahead of
current best defense practices. Over the past decade, botnets have
developed from using statically hardcoded IP addresses and domain
names to randomly-generated ones, so-called domain generation
algorithms (DGA). Malicious software coordinated via DGAs leaves
however a distinctive signature in network traces of high entropy
domain names, and a variety of algorithms have been introduced
to detect certain aspects about currently used DGAs.

In this paper, we look ahead and evaluate the utility of today’s
detection mechanisms if botnets make the next obvious evolution-
ary step, and replace domain names generated from random letters
with randomly selected, but actual dictionary words. We find that
the performance of state-of-the-art solutions that rely on linguistic
feature detection would significantly decline after this transition,
and discuss an alternative novel approach to detect DGAs without
making any assumptions on the internal structure and generating
patterns of these algorithms.
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1 INTRODUCTION
Malware and specifically botnet infections are repeatedly identified
as one of the major enablers of cyber crime. Symantec [19] reports
that about 40% of all distributed denial-of-service attacks (DDoS)
originated from botnets that offer their services on underground
market places, and Demarest [7] estimates that approximately 500
million computers are infected per year world-wide.

In order to control this army of compromised computers, botnet
owners typically establish a command-and-control (C&C) server to
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which hosts report, fromwhere they receive a list of tasks to execute,
and towhere they uploadmaterial they gather. As this C&C server is
publicly exposed and an obvious point-of-failure in the coordination
of the botnet operation, a large share of botnet mitigation has
focused on taking down C&C infrastructure and suppressing its
communication channel. This has led to a co-evolution of new
means to hide and detect infrastructure and control channels in a
cat-and-mouse game.

Evolution of Botnet Control
A basic problem in the deployment of botnets that malware authors
face is that they need to find a way so that the distributed clients
can find and connect to the C&C server, and although the address is
known to anyone in possession of the malware the channel should
not be easily disrupted by network owners or law enforcement.
This is for example the case with the most simple way of linking
clients to the C&C server by means of a static and hard-coded IP
address, which could trivially be blacklisted in firewalls or taken out
of circulation by a hosting provider on request from the authorities.

In order to be able to dynamically update the location of the
C&C infrastructure, botnets are hence finding the control server
based on domain names. Although a domain can also be seized
by law enforcement, the process takes significantly longer, as it
may require cross-border actions. To further limit this angle, botnet
owners are also not relying on a single static domain name in their
client software, which after being seized would leave the entire
system inoperable, but rather dynamically generate domain names
on the fly.

The domains at which the C&C server is contacted are computed
using a domain-generation algorithm (DGA) based on the current
time or some other information publicly available across all hosts,
each only valid for a short amount of time. In addition to the short
validity, DGAs frequently generate also hundreds of candidate do-
mains per time interval. Infected hosts lookup all candidate values
to find the domain that was actually registered by the botnet owner,
which from a defense perspective makes this mechanism very dif-
ficult and costly to suppress, as registering, seizing or sink holing
thousands of domain names per day is often too administratively
complex, costly or not scalable.

Current DGAs generate domain names by concatenating ran-
dom letters and morphemes. This has the clear advantage that the
resulting domain names are with very high likelihood available, but
has the drawback that they leave in the network a characteristic
trace of a series of unsuccessful lookups (NXDomains) for domain
names, each with a high entropy name such as yfewtvnpdk.info or
rwyoehbkhdhb.info that is unlikely requested by normal users.
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There exist a number of algorithms to detect these lookups,
which stand-out significantly from other DNS traffic, and thus are
highly effective in locating this irregular traffic. Existing approaches
for example find linguistic deviations in contacted domain names,
check whether (parts of) the domain names are listed in a dictionary
or assume that infected hosts behave exactly the same with regards
to timing of DNS requests. Given the high mitigation performance,
it can however be expected that botnet owners will transition to
the next stage in DGA evolution as soon as today’s countermea-
sures are widely enough applied to derogate from the malware
owners’ bottom line, as it was the case with previous developments
described above. The bulk of these algorithms relies on entropy or
word list measures in some form or the presence of periodicity in
requests as part of their detection strategy, the obvious transition
to make is to concatenate random words from a dictionary instead
of concatenating random letters, and add some variation in time
when these lookups are made.

In this paper, we show that a DGA generating names like sun-
nytailorballoons.info instead of rwyoehbkhdhb.info would signifi-
cantly interfere with existing measures based on linguistic feature
detection. These generated names also appear less suspicious in
casual inspection, hence alternative approaches are needed that
remove implicit reliance on the structure of the generated domain
names. Furthermore, if lookups are made with some random delay,
the resulting patterns are no longer strong enough to be reliably
detected in a large scale network.

This paper makes two main contributions:
• We evaluate the performance of existing DGA detection algo-
rithms if domains would no longer be consisting of randomly
assembled letters, but rather fall back on concatenating nor-
mal dictionary words, which no longer stand out from visible
inspection against normal DNS traffic nor from the perspec-
tive of entropy. The detection performance is also negatively
affected if requests are no longer strictly periodic.
• We show that DGAs in a large network can be efficiently
found by detecting sudden rises and declines of popularities
of domain names.

The remainder of this paper is structured as follows: section 2
discusses related work to detect botnet infections based on anoma-
lous traffic patterns. Section 3 describes the collection of the data
set and safeguards taken to maintain the privacy of users. Section 4
introduces our proposed approach, which is compared in section 5
in terms of detection performance against previous work. Section
6 concludes the work and summarizes our findings.

2 RELATEDWORK
According to Feily et al. [8] botnet detection techniques can be
classified into two major classes: signature-based and anomaly-
based. The first works by finding and blacklisting known malicious
signatures in network traffic. This approach can be compared to
traditional locally installed malware detection mechanisms try-
ing to detect specific signatures in executables [20]. Wurzinger et
al. [22] applied these techniques to detect specific Internet Relay
Chat (IRC) botnets by scanning for specific byte patterns in the
network traffic. Detecting botnets with signatures, if the traffic is
unencrypted, is straightforward, but requires a continuous effort to

keep the database of signatures updated with the ever increasing
amount of malware, that might behave slightly different compared
to all previous instances. This reduces the practical applicability, as
by definition, the actors operating a botnet (botmasters) are always
one step ahead of being detected.

The second class, anomaly-based detection, tries to detect mali-
cious applications (including botnets) based on behavioral analysis.
Binkley et al. [3] create a system to automatically cross match char-
acteristics of IRC messages with TCP SYN packets (commonly used
for denial-of-service attacks) in order to detect botnet channels and
infected hosts. Livadas et al. [12] compare multiple classifiers on
network flows of IRC traffic to subsequently distinguish legitimate
chat messages from botnet traffic. Strayer et al. [18] see problems
with botnet detection techniques analyzing IRC traffic on a static
port (6667, the default for IRC) and only responding after an attack
has been executed. Therefore they propose a solution that detects
patterns in network flows. Specifically, used bandwidth, timings of
packets and burst duration are measured. The proposed model can
detect IRC botnet traffic running on any port without analyzing all
messages directly.

Gu et al. [9] also use network flow analysis to detect botnets, but
instead of detecting specific IRC botnets, they try to correlate net-
work flows of multiple clients in a network to detect similar traffic.
This relies on the assumption that multiple instances of the same
malware will behave the same and show similar network patterns.
In addition to this, AsSadhan et al. [2] see complications in the scal-
ability of analyzing network flows of single hosts and approach this
problem with aggregated flows of multiple hosts. Singh et al. [16]
see the amount of data generated by network-based detection sys-
tems as a challenge. Therefore they propose a system that analyzes
full network traces in a horizontally scaling manner. Specifically
they apply their system on detecting peer-to-peer botnets. This
is done by automatically creating a Random Forest Decision Tree
and applying this model to the captured data. BotHunter [5] uses a
correlation engine combining data of three points in a network. The
goal is to detect the common botnet infection life cycle (inbound
scan, exploit usage, malware distribution, outbound bot coordina-
tion, outbound attack propagation) and determine new infections
within a network. Problems with this technique include botnets
being very obvious in their communication and the authors expect
botmasters to circumvent (parts of) this system by scanning in
a stealthy manner or by using encrypted communications to the
C&C.

Historically, bots had a hard-coded IP address or domain name
implemented in the malware binary. Blocking communication to
a single IP address or domain name is usually a trivial task for
law enforcement or network administrators and botnets utilizing
this technique often do not exist for long periods of time. To cir-
cumvent getting taken down, while still using the ease of HTTP
(instead of moving to a distributed peer-to-peer system), bot mas-
ters started to pseudo-randomly generate domain names based on
a deterministic seed. This seed is often the current date, but can
also be non-predictable public information (for example “trending
topics” of twitter.com). This way, a bot would try to automatically
connect to a new (set of) domain(s) every day which would make
it harder to take the botnet down. In the case that these algorithms
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create more than a single domain per day, it would also be very
expensive for third parties to pre-register all domains in order to
take over a botnet. When no public data is used as seed for the
DGA, it is also impossible for law enforcement and researchers to
predict domains that will be in use in the future.

As these DGAs heavily rely on the Domain Name System (DNS),
a subset of anomaly detection focusses solely on detecting mali-
cious applications based on this traffic. Thomas et al. [21] proposes
to analyze NXDomain DNS traffic “at several premier Top Level
Domain (TLD) authoritative name servers”. They do this by cal-
culating the Jaccard index of two sets of recursive name servers
A and B requesting two different domains X and Y . According to
the authors, the Jaccard similarity for NX domain responses of the
same DGA is often above 0.9 and domains of botnets can be de-
tected in that way. PsyBoG [11] approaches the problem of botnet
detection by assuming that botnets have periodic and simultane-
ous behavioral pattern. To reduce the data to be processed, only
DNS traffic is used. In order to find the periodicity of a host, all
DNS traffic is stored with the requesting IP address and timestamp.
Then a periodicity analyzer determines the power spectral density
(PSD) [17]. Significant peaks on similar frequencies over multiple
hosts then indicate a botnet infection on these hosts, as normal
traffic would not result in a deducible periodicity.

Another approach to this problem comes from liguistical analysis
of queried domain names. Antonakakis et al. [1] assume that com-
puters in a network, infected with the same malware, will generate
similar DNS queries that result in similar NXDomain responses.
This is done by calculating 33 statistical features per DNS request
returning a non-existent domain error response (NXDomain) and
using a combination of the X-means clustering algorithm [14] and
a Hidden Markov Model to detect malicious domains, and subse-
quently classify them into clusters belonging to the same botnet.
Schiavoni et al. [15] created a system called Phoenix, which uses a
set of linguistic features on the domain name to initially determine
whether or not it might be a legitimate domain. The baseline for
the legitimate classification is built from the top 100000 Alexa1
domains. After this, domains get marked as illegitimate when the
Mahalanobis distance [13] to the centroid of the cluster of the legit-
imate domains exceeds a fixed threshold.

A combination of both behavioural and linguistic detectionmech-
anisms can be seen in Choi et al. [6] system, the BotGAD framework,
which collects all DNS traffic passing through. It stores this traffic
with the requesting IP address and the corresponding timestamp.
Per domain name, BotGAD creates a matrix of timeslots and re-
questing IP addresses. To find computers that are infected with the
same malware, the cosine similarity coefficient [23] is calculated in
order to determine the similarity of these matrices. Then the data
is enriched to calculate lexicological features and the distinctive
features of the DNS queries. For DNS features, BotGAD’s focus is
mainly on the Time To Live (TTL) of the DNS records, information
about the autonomous system (AS) and hosting country (resolved
by the database of MaxMind2). A short TTL is a good indication for
Dynamic DNS (DDNS) [4] or Fast-Flux Service Network (FFSN) [10]
usage.

1http://www.alexa.com
2http://dev.maxmind.com/geoip/legacy/downloadable/
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Figure 1: DNS queries and responses were collected through
port mirrors on the core routers, thereby intercepting both
internal and external request/response pairs from internal
hosts and external DNS advertisers and resolvers.

3 DATA COLLECTION
The evaluation of anomalies using a synthetic evaluation context
runs the risk that an algorithm’s performance is heavily influ-
enced by the rules and procedures used for creating the evaluation
dataset. For example, as benign and malicious traffic is generated
and merged to create a synthetic data set, the way how DNS re-
quests are created may greatly influence the performance of the
detection algorithms. For example, as an algorithm such as PsyBoG
will consider periodicity as part of its detection strategy, the type
and configuration of an artificial user model that generates network
requests may or may not contain certain features, thereby greatly
influencing the evaluation results.

Thus, in order to create a realistic evaluation scenario, we will
test the DGA detection algorithms in this paper against an actual
snapshot of DNS traffic obtained from a research network back-
bone. This section discusses the method used for collecting and
anonymizing the dataset to safeguard the privacy of the network’s
users.

3.1 Data Acquisition
In order to eliminate potential biases and artifacts from a synthetic
workload and network traffic, we developed an evaluation scenario
based on the actual DNS traffic generated by a population of 22,329
hosts. The data trace was obtained by installing a filtering rule on
the core routers in a research network that would deliver a copy
of any TCP and UDP traffic on port 53 leaving and entering the
network as well as in between the network’s organizational zones.
Figure 1 shows the abstract topology of the network.

The filter on the core router would hence see every DNS request
leaving the client network either towards the network’s DNS re-
solvers (or the Internet if the client were reconfigured to use an
alternative recursive resolver), packets querying the authoritative
name servers hosted within the research network, as well as any
recursive lookups from the network’s internal resolvers to other
name servers on the Internet. The analysis presented in this paper
spans a time period of 14 days, in which a total of 612,011,001 DNS
lookups and responses were recorded.

http://www.alexa.com
http://dev.maxmind.com/geoip/legacy/downloadable/
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3.2 Data Anonymization
As DNS lookups precede the bulk of network traffic and operating
systems conduct minimal caching of responses, the sequence of
DNS requests provides a highly accurate view of the activities
of a client and thus the individual user. This makes it critical to
anonymize the data sufficiently to safeguard the privacy of the
users, this section will describe the anonymization protocol used,
which was developed with the research network’s privacy officer.

Recall from figure 1 that the collection point at the core router
provided three basic types of DNS traffic flows: first, DNS requests
from the local area network to the network’s internal resolvers
and soon after responses from the internal resolvers to the internal
clients, second, traffic between the internal recursive resolvers to
external authoritative DNS name servers, and third, – in case of
a lookup of a DNS record somewhere else in the Internet that is
hosted by the research network – traffic between external DNS
resolvers and the network’s own authoritative name servers. This
means that we can characterize the network into three zones, (a)
the internal network of clients, (b) the DNS servers hosted in the
research network, and (c) any host external to the network.

We see that traffic flows from (b) to (c) are not privacy-sensitive.
The authoritative name servers for DNS zones are public knowledge,
the recursive lookups contain no connection to a local machine and
the recursive DNS lookups aggregated over tens of thousands of
simultaneous users do not allow the identification of an individual.
Requests from zone (c) to (b) and even more drastically from zone
(a) to (b) may however be linked back to an individual person. Local
laws and policies stipulate that such a linkage is established via
the IP address as a personal identifier (PII), but application of a
non-reversible transformation of this function is sufficient, as it
prevents a lookup of a specific activity and assignment towards
a concrete PII and person. If the transformation is deterministic,
this provides the added benefit for cross-correlating sequences of
lookups – as can be expected from a DGA – while ensuring the
anonymity of the originating user.

Such non-reversible but deterministic transformation is triv-
ially accomplished using a hash function, in our implementation
SHA-256. However, since the set of IP addresses is known and de-
numerable, a basic hash of the IP address does not suffice. Instead, a
unique salt was generated for each IP address x and each IP address
on the internal network and the Internet hashed together with its
unique salt s[x] to obtain the anonymized y ← hash(s[x]| |x ). This
procedure guarantees that given an anonymized record y it is not
possible to find the corresponding IP address x , and as well as given
a known IP address x it is not possible to determine the associated
DNS records in the dataset. In the reverse, given a domain name
we can lookup an anonymized list of hosts that have requested the
record but are not able to link it to a specific user.

As we aim to find infected hosts on the internal network, it is
essential to know between which zones a DNS request and response
actually flows. To preserve information about the location of a
host in the anonymized IP address, the highest bit of the network
address is set to 1 if the address was part of the internal network
(zone (a)), a 0 indicating a position somewhere on the Internet
(zone (c)). A regular DNS lookup to an external domain would
thus show the flow pairs {(1???????→ network-resolver, domain

name), (network-resolver→ 0???????, domain name)}, while a local
client trying to bypass the internal recursive resolver will leave
the record (1??????? → 0???????, domain name). Although the
above procedure will slightly increase the chance for collision in
comparison to the collision probability of the hash function itself,
experimental evaluation has determined this issue to be irrelevant in
practice. The original data and salts were maintained and processed
by a separate party, and only the anonymized traces were used in
this research.

4 METHODOLOGY
The key differentiating part of the algorithm presented in this paper
is that we make no assumptions on the structure and mechanics
of the domain name candidates used within the DGA, i.e., domain
names can be generated in any arbitrary way including dictionary
words. As it is the very nature of domain generation algorithms to
dynamically generate names – as static domains would otherwise
be trivially blocked –, we will use this fact that they are only used
for a short period of time as a strategy to detect them. Our method
will exploit that DGA-based DNS traffic has to be transient to be
effective, hence we calculate the popularity of domain names and
detect sudden increases and decreases of traffic over multiple days.
This allows for a very simplistic, yet efficient method in detecting
DGA anomalies. A drawback of this method is that detection of a
new botnet can only happen after the first day of infection.

4.1 Parsing data
DNS traffic enters the system as packet captures (pcap) containing
all packets the name servers encountered over port 53 (used for
DNS). Each file contains one hour of traffic and is parsed with
libpcap. Processing is done by iterating over all packets in a given
pcap file. As the pcaps contain more than just DNS traffic, we
start by filtering out these unwanted packets. The pcaps not only
contain the requests from within the network to the network’s
name servers, but also from these name servers to the external
authoritative name servers, and external requests about names
that these name servers are authoritative for. Since we are only
interested in detecting infected hosts from within the network, we
discard the traffic to and from external sources. We also completely
ignore all traffic where our name servers replied with authoritative
answer (AA) flag, as we assume that we do not facilitate domain
names used for DGAs ourselves. For all remaining requests, we
store the requesting IP address, the affected domain name and the
exact time in memory. After iterating over all packets in a pcap,
we reduce the accumulated data to only store a mapping of IP
addresses requesting specific registered domain names on a given
day (without the exact time).

Content Delivery Networks (CDNs) and other load-balanced ser-
vices create a large amount of fully qualified domain names, where
each domain name is only requested a few times across all network
hosts. In order to reduce the amount of noise and fluctuation and
match requests which in practice functionally belong together, we
only use the name of the registered domain to significantly reduce
the amount of data as a DGA may chose to prepend more data
to lower levels of the domain name. In practice we use Mozilla’s
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Figure 2: Method used to find IP addresses I ′ broadly related
to a domain D. In this figure, D is indicated in blue, D ′ in red.
The elements of set I are colored orange, I ′ yellow.

Public Suffix List3 and take one extra level (e.g., test.example.org
gets reduced to example.org). From this dataset, we calculate the
total amount of requests to a specific domain on an hourly basis.
Finally, when all files have been processed, we further reduce this
data to store the amount of requesters per domain name for every
day encountered in the original data set.

4.2 Filtering data
After importing all data, we filter the list of domain names to only
include those that are requested on one to three consecutive days
and not before or after that. This rule hooks on the transient nature
of a DGA, the algorithms employed by the infected hosts will at
some point start to generate a particular domain and as the seed
or variables progress stop to do so. At the same time, this rule also
ensures that the detection is insensitive to spontaneously emerging
trends, for example requests triggered in response to an adver-
tisement campaign for a new product or sudden interest due to a
political or sport event. While certain triggers may spark a sudden
interest in a topic and a peak in DNS lookups for the associated
names, the requests from all hosts will not emerge and cease across
all clients in a synchronized fashion, some users will have known
about the product, sports event etc. before popularity set in, others
will continue to visit these sites after the hype has vanished.

From these remaining domains, we look up all IP addresses that
requested similar domains in the following way. Given a domain D:

(1) Find all IP addresses I that requested a domain D
(2) Find all domains D ′ requested by all IP addresses in I
(3) Find all IP addresses I ′ that requested domains in D ′

A visual representation of this process is given in figure 2. The
reason we apply this method is not to miss any domains contacted
by a DGA contacting domains in a locally random order which
might not get contacted by all infected hosts. If we would not
do this, these domains would still get recognized as malicious,
but cannot be clustered together as belonging to the same botnet
afterwards. While this allows to differentiate between single and
multi-infections on individual hosts, this post-processing step has
the drawback that it can include unrelated domains into a cluster
consisting of DGA domains. If the differentiation into individual
botnets is not needed, this post-processing may be dropped.

3https://publicsuffix.org/

4.3 Finding clusters
After collecting all broadly related IP addresses per suspicious do-
main name, we need to determine how distinctive a particular
pattern is across the entire population. If A denotes the subset
of hosts requesting a suspicious domain name across all hosts B,
we are thus interested in |A∩B |

|A∪B | , which is denoted as the Jaccard
similarity between A and B. We leave the Jaccard similarity as an
adjustable threshold in our algorithm, as the clustering of domain
names depends on the similarity of the requesting hosts within the
network. Our assumption is, that multiple botnet infections in a
network do not cover the same hosts, and therefore we want to
determine which suspicious domain names are probably related to
the same DGA.

In order to limit the amount of output, we make use of two more
variables: the average amount of unique hosts requesting a domain
in a detected cluster and the minimum of hosts requesting a domain
required for it to be included in a cluster. The rationale for this is
to limit the output to clusters that are requested by multiple hosts
within the system, rather than focussing on single hosts.

5 EVALUATION
In order to evaluate our system, we tested our algorithm on 14 days
of DNS traffic generated from 22,329 internal hosts. Establishing a
baseline truth of all true positives is a hard task, as after all it would
necessary to have a complete and labeled set of all malicious domain
names currently in use by botnets. As an alternative approach and
in order to preserve the statistical characteristics of the regular user
traffic, we classified a random subset of all hosts as “malicious”, and
for these hosts change some of their DNS requests to query domain
names generated by one or more DGAs. Each malicious bot would
request, in a locally random order, up to 100 domains per day with
at least one domain being requested by all hosts. We applied this
experiment with different infection rates of the network, specifically
0.02%, 0.1%, 0.5%, 1.0% and 5.0%. Assuming for now the baseline to
be clean of malware, we can thus evaluate how much of the now
known DGA instances are correctly detected by the algorithms,
and how accurate the detected clusters represent the entirety of
the botnet.

Jaccard similarity
As discussed above, we chose the Jaccard index as a metric for
comparing the similarity of the request patterns of hosts in the
network. Depending on the amount of infected hosts (and in case
the lookup patterns of the population are highly diverse), it is
necessary to adjust this variable to correctly classify two domains
A and B together as belonging to the same botnet. For this we leave
the two variables to filter clusters to low values to not filter out any
potential clusters already.

In figure 3 and figure 4 we can see the precision, the ratio of true
positives over the amount of all elements predicted as positive by
the algorithm, and recall, the ratio of true positives over all positive
elements or the true positive rate, of the detected cluster(s) con-
taining our test botnet. As can be seen in the figures, the algorithm
is fairly robust with respect to the Jaccard similarity and in terms
of the percentage of infected hosts in the network. We find that
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Figure 3: Precision for different thresholds for Jaccard simi-
larity and the size of the botnet

Figure 4: Recall for different thresholds for Jaccard similar-
ity and the size of the botnet

a threshold within the range of 0.6 and 0.7 provides the highest
precision or positive predictive value and no unidentified elements.

If we were to tune this value outside of the optimal corridor,
botnet detection will either begin to fuse or become fragmented.
For the smallest set of infected hosts, 0.02%, even higher Jaccard
similarities result in a high precision and recall, but the algorithm
detects the domains contacted by the hosts as multiple different
clusters, whereas starting from 70%, the injected domains are de-
tected as a single cluster. As can be seen, using a lower threshold
for the Jaccard similarity results in significantly lower precisions in
the detected cluster for small groups of infected hosts. With larger
infected parts of the network, this has a smaller impact on the pre-
cision. Figure 5 shows the Jaccard similarities between all domains
in the injected traffic. From this, we can also see that in order to
detect all domains belonging to the same injected set of domain
names, we must allow use a threshold for the Jaccard similarity
around 60% to 70%. In case of a DGA assembling candidate domains
from random words, this result is expected as domains will follow
the similarity patterns of normal word lists.

Detection Performance for Random Letter and
RandomWord DGAs
As some other algorithms are very time and memory consuming to
run, we limited our comparison to other algorithms based on data of
a single day. On this day, we injected DNS traffic for 1% (220) of the
hosts with either domains generated by the Locky ransomware4,
4https://dgarchive.caad.fkie.fraunhofer.de/site/families.html

Figure 5: Jaccard similarity between all injected domains for
0.02% infected hosts

which generates domain names based on the random characters
(e.g., hrgcmmihpxth.in) and easily stands out within regular DNS
traffic. As an alternate condition, the same infected hosts requested
malicious domains generated by concatenating random words from
the English dictionary.

In order to mimic reality, we injected the traffic as if the bot-
net would query 200 domains in a locally random order, with 1
request exactly every 10 minutes. Once a host reached the domain
that would be registered and return a valid DNS answer, it would
continue to request that domain until the end of the day.

Table 1 shows an overview of detection rates of the four eval-
uated algorithms, for the case of Locky and a word-based DGA.
The domains and host infections were randomly seeded and placed,
and the results shown are the arithmetic average over 10 runs. One
step in the Pleiades [1] algorithm relies on a spectral clustering
of domain names, which in turn necessitates a Eigenvalue decom-
position of an incident matrix. Standard algorithms for this step
have a complexity of O (n3), and while only taking into account
NXDomain traffic, the time and memory intensity of this algorithm
makes it hard to apply in practice. In fact, in the tests we tried run
on the dataset of a full day, it could not finish on a 24-core server
with 200 GB of RAM for the dataset of 22,000 hosts, and in smaller
sample sizes, it only managed to find clusters related to reverse
DNS lookups. As it heavily relies on linguistics, it can be expected
to fail to detect domains generated by a DGA specifically trying to
evade this. In order to enable a comparison, we hence also create
a smaller synthetic evaluation scenario which will be discussed
below.

Phoenix [15] works in three steps, of which the first one tries to
determine whether or not a domain might be suspicious. After ap-
plying this step to all traffic from the selected day, Phoenix already
filtered out more than 60% of the Locky and natural language do-
mains, while still leaving 39% of all domains occuring in the dataset.
As the detection of Phoenix is built against a baseline of actual
domain names (the Alexa 100000 list), we see a drop in detection of
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Linguistic-based Periodicity-based
detection rates our algorithm Pleiades Phoenix BotGAD PsyBoG (hosts)
detected Locky domains 200 (100%) - 77 (38.50%) 1 (0.50%) 125 (56.82%)
total detected with Locky domains 72282 - 271686 68965 7424
detected natural language domains 200 (100%) - 46.5 (23.25%) 1 (0.50%) 125 (56.82%)
total detected with natural language domains 72282 - 271655.5 68965 7424

Table 1: Detected locky domains and natural language domains on the compared day of traffic containing 707826 different
domains. The detected domain byBotGAD is the "active" DGAdomain, contacted by all infected hosts. Domainswere generated
with a seeded random number generator and results were averaged over ten runs.

about 40% in detection with the transition from random letters to
random words.

In contrast to Pleiades and Phoenix which heavily rely on linguis-
tic features in their detection, BotGAD and PsyBoG mainly build
on the synchronization and periodicity of requests. BotGAD [6]
also filters domains before attempting to cluster domains together.
After this step, it still retained all of the domains detected by our
algorithm, but it also marked 73% of all domains as possibly suspi-
cious. After this, it would further reduce the set of detected domains
based on linguistic features of the domain names and features of
the DNS query and answer itself. Furthermore it relies on short
periodicities of DNS traffic over multiple hosts and it needs to be
fine tuned to a time window, where a larger time window results
in significantly less accuracy, and a smaller time window could
miss suspicious domains (as a bot might not use DNS in a periodic
manner). PsyBoG [11] detects infected hosts by finding periodicities
in the timing of DNS requests issued from any given host in the
network. As the inserted traffic between the Locky domain names
and natural language domain names are on the same times, the
results do not differ.

Until now, we have made the assumption of the baseline dataset
to be clean of malware, which allowed us in the evaluation of the
four algorithms to benchmark against a known reference. Without
further filtering, our algorithm detected 7041 additional clusters in
the original dataset. We manually inspected these and tried to find
actual malicious domain names in these and found 18 suspicious
sets, based on the randomness of the names. We crossmatched the
domains we detected with DGArchive5 without a result. Interest-
ingly, all except for one set of suspicious names, was only queried
by a single host on one or two days. The final cluster, consisting
of 26 domain names, we found turned out to be from an adver-
tising network utilizing a few random looking domain names to
distribute their ads. Also, for all detected clusters we manually
checked the network traces of the detected hosts to make sure the
algorithm found all relevant domain names (as requested by the
affected hosts). This was always the case, although our algorithm
did always include a minority of benign domains as well.

Since we want to detect botnets active in a network, one of the
filtering parameters in our algorithm allows to reduce the output
by only returning detected clusters with a minimum average re-
questers per domain name within a cluster. In our tests with the
injected traffic, we noticed that even the hypothetical infection of
0.02% of the network with a DGA would make this average stand
5https://dgarchive.caad.fkie.fraunhofer.de/

out significantly significantly from other detected clusters that are
actually benign. After applying this filter, to an average of 2 unique
requesters per domain name in a cluster, the output would be re-
duced to a manageable volume for a network admin to manually
check (22 clusters in the tested traffic).

A constrained evaluation scenario. Given the algorithmic
complexity of the Pleiades approach, a detection for the full network
was intractable. To compare detection in networks with a known
infection, we constructed a network of 1,000 hosts, of which 200
are infected with a botnet performing periodic DNS requests every
10 minutes to DGA domains (constructed as done by the Locky
ransomware and domains generated by concatenating dictionary
words). This scenario results in an Eigenvalue decomposition that is
still computationally feasible, and is therefore testable with Pleiades.
For four days in a row, all hosts had a predetermined start and
shutdown time, mimicking hosts being turned on in the morning
and being shut down in the afternoon and evening. Additionally, all
1,000 hosts would randomly contact domains of the Alexa top 200.
The precision and recall for Pleiades, Phoenix, BotGAD, PsyBoG
and our algorithm on this constructed network is shown in table 2.
As can be seen, the algorithms most heavily relying on linguistics of
domain names, Pleiades and Phoenix, do not perform well with the
DGA domains consisting of dictionary words. As expected, request-
based algorithms such as BotGAD, PsyBoG and our algorithm do
not see any change in this synthetic network.

Fluctuations in Access Times
As shown in the previous section, linguistic-based detection can be
easily circumvented by a next-generation DGA if domain names
contain less entropy and resemble more normally requested domain
names. This issue of better resembling background traffic can how-
ever also be said about the request times, as users do not access web
resources and generate DNS lookups in a strict pattern as would be
generated by an algorithm. In this section, we hence investigate the
effect of variations in request times on the performance of detection
algorithms. For a botmaster, this step would be equally trivial to
make - instead of letting the malware contact a candidate domain
every x seconds, requests are issued every x + k seconds, where k
would be a random number drawn from a Gaussian distribution.

Figure 6 shows exactly this scenario, the detection accuracy
given that the periodicity of requests is shifted by a random delay.
As we can see in the figure, a periodicity-based approach such as
PsyBoG – which was very resilient to a change in domain name
patterns – heavily degrades as soon as variability in the requests
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Linguistic-based Periodicity-based
our algorithm Pleiades Phoenix BotGAD PsyBoG

Locky - precision 1.00 1.00 0.86 1.00 0.80
Locky - recall 1.00 0.02 0.51 1.00 1.00
natural language - precision 1.00 0.00 0.73 1.00 0.80
natural language - recall 1.00 0.00 0.23 1.00 1.00

Table 2: Precision and recall for DGA detection in a randomly constructed network for Pleiades, Phoenix, BotGAD, PsyBoG
and our algorithm. Domains were generated with a seeded random number generator and results were averaged over ten runs.

Figure 6: Detection accuracy of the five algorithms as a func-
tion of the periodicity of requests by infected hosts.

in introduced. Already at a standard deviation of 2 minutes, the
accuracy is comparable to a random guess for the infected hosts in
the network.

6 CONCLUSION
In this paper we have evaluated the detection performance of cur-
rent DGA detection algorithms against the next likely step in the
evolution of botnets: the generation of random, but human-readable
domain names that no longer stand out from regular DNS traffic,
as well as randomness introduced in the request times. Although
to date this practice is not established in malware, historical ex-
perience shows that malware authors co-evolve their techniques
as soon as defense mechanisms are sufficiently widespread and
harm their installation base and return on investment. We find that
existing approaches are not up to par in detecting this next evolu-
tionary development, and propose an alternative approach – which
does not make any assumption on the structure of the domains
themselves – which can detect DGA based on human-readable
words.
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